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Efficient Learning of Variable-Resolution Cognitive
Maps for Autonomous Indoor Navigation

Angelo Arleo, Jośe del R. Millán, and Dario Floreano

Abstract—This paper presents an adaptive method that allows
mobile robots to learn cognitive maps of indoor environments
incrementally and on-line. Our approach models the environment
by means of a variable-resolution partitioning that discretizes the
world in perceptually homogeneous regions. The resulting model
incorporates both a compact geometrical representation of the
environment and a topological map of the spatial relationships
between its obstacle-free areas. The efficiency of the learning
process is based on the use of local memory-based techniques
for partitioning and of active learning techniques for selecting
the most appropriate region to be explored next. In addition, a
feed-forward neural network is used to interpret sensor readings.
We present experimental results obtained with two different
mobile robots, namely a Nomad 200 and a Khepera. The current
implementation of the method relies on the assumption that ob-
stacles are parallel or perpendicular to each other. This results in
variable-resolution partitionings consisting of simple rectangular
partitions and reduces the complexity of treating the underlying
geometrical properties.

Index Terms—Autonomous mobile robots, exploration, map
learning, neural networks, occupancy grid, topological graph,
variable-resolution partitioning.

I. INTRODUCTION

T HIS paper presents a map learning method that allows a
mobile robot to explore an unknown indoor environment

in order to acquire a spatial-navigation model incrementally
and on-line.

The proposed method integrates the two principal ap-
proaches to map learning for indoor environments, namely
the geometricalparadigm and thetopological paradigm. In
the former, the geometrical features of the world are modeled
accurately. Obstacles are modeled according to their absolute
geometric relationships. One of the most popular of such
methods consists of representing space by means of a two-
dimensional evenly-spaced grid calledoccupancy grid(e.g.,
[1], [2]). Each grid cell estimates the occupancy probability of
the corresponding area of the world. Topological maps (e.g.,
[3], [4]) are more qualitative representations of the world. The
model consists of a graph, where nodes represent perceptually
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distinct regions of the world and arcs indicate spatial relations
between them.

The two paradigms are characterized by complementary
strengths and weaknesses [5]. Since occupancy grids reproduce
the geometrical structure of the environment explicitly, they
are easy to learn and maintain: the position of each observed
feature is mapped into a global absolute frame of reference.
As a consequence, also the robot’s position and orientation
within the model are automatically given by its position and
orientation within the real world. This allows the robot to
distinguish places of the environment that are perceptually
similar. However, this approach is limited by its vulnerabil-
ity to errors that affect the metric information (i.e., robot’s
position and distance to obstacles). In particular, failures of
the robot self-localization capability have devastating effects
on the map accuracy. In addition, building occupancy grids is
expensive in terms of memory and time. Indeed, to accurately
model each single part of a complex environment, the resolu-
tion of the occupancy grid must be high and the learner must
manage a huge amount of data.

Recent research on animals’ behavior suggests a more
qualitative representation of the world based on a compact
storage of a few relevant features of the environment [6],
[7]. Links between these landmarks are then used to achieve
navigation. The topological approach is inspired upon these
findings. Its major advantage is the compactness of the en-
vironmental model: the complexity of the learned map is
directly related to the world complexity. This permits to
optimize the use of time and space resources. Furthermore,
since topological maps are qualitative representations of the
world, they are not necessarily vulnerable to errors in the
metric information. In addition, since the world is represented
by a graph, this approach permits fast planning of robot
trajectories. As in the geometrical approach, robots need to use
self-localization in order to build consistent representations.
However, since topological maps do not rely on absolute
frame of reference, the place recognition problem is solved
by discriminating sensory data only. That is, landmarks (i.e.,
nodes in the topological graph) are identified by means of
a sensory pattern recognition process. As a consequence,
spatially distinct places producing equivalent sensory patterns
might not be distinguished.

Our approach attempts to combine the respective advantages
of the geometrical and topological paradigms and to minimize
some of their weaknesses. The model consists of avariable-
resolution partitioning: the environment is discretized in sub-
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areas (i.e.,partitions) having different sizes and representing
perceptually homogeneous regions of the environment. The
resulting map provides a compact representation of the ge-
ometrical structure of the world, thus optimizing the use
of memory and of time resources. Indeed, the use of the
variable-resolution directly relates model complexity to world
complexity: the aim is to have a high resolution only in
areas of the world that require more complex navigation.
Furthermore, the map does not model fine details—which are
difficult and expensive to represent. The topological aspect
of the model derives from the fact that the partitioning splits
the environment in perceptually homogeneous regions. Thus,
it is possible to abstract a graph representing the spatial
connectivity between these regions. This graph is then used
for motion planning.

The proposed map learning method addresses the following
issues.

1) Model Complexity: Instead of building a global mono-
lithic model of the environment, we adopt a local
learning approach. By means of a variable-resolution
partitioning the robot’s knowledge is distributed in many
simple local models (e.g., [8]). Each local model rep-
resents a partition and encodes the information about
the corresponding region of the world. A local approach
helps for reducing the problem ofcatastrophic interfer-
ence[9] that would arise in the case of using a global
monolithic representation.

2) Sensor Uncertainty: Since perceived data are not error-
free, the robot needs to interpret its sensor readings
effectively. We follow Thrun’s approach [5] of using
a neural sensor interpretation. A feed-forward neural
network is used to create a local occupancy grid model-
ing the space surrounding the robot. This grid provides
the robot with a robust local perception. Our approach
differs from Thrun’s approach in the way this local grid
is used. In Thrun’s approach the local grid is used to
build global geometrical maps directly. In our method
the local grid is used to approximate obstacle boundaries
by straight lines. These lines are then used to build the
variable-resolution partitioning.

3) Real-time Learning: We take a memory-based learning
approach (e.g., [10], [8], [11]) to build the map on-line
and in real time. A memory-based learner is trained
by simply storing data in memory, reducing the time
needed to incorporate new knowledge in the model.
Purely memory-based methods do not attempt any data
compression (e.g., [8], [11]). The proposed method
attempts to optimize resources (i.e., memory and time to
manage data) by collecting only significant experiences;
that is, those experiences that actually improve the model
accuracy.

4) Exploration: In order to optimize the learning time, we
use an active learning approach (e.g., [12], [13]). An
“active” learner is one that uses its current knowledge to
drive the generation of training data in order to maximize
the gain of information in the least possible time. This
active behavior is obtained by making the robot always
explore the least known region of the environment.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III describes the
map learning method. Section IV shows experimental results.
Finally, in Section V we discuss limitations and advantages
of our approach.

II. RELATED WORK

The proposed approach can be thought of as a combination
of the geometrical and topological paradigms. The benefits of
combining both approaches have been already discussed in
the literature. Earliest ideas were proposed by Chatila and
Laumond [14] and Elfes [15], [16]. Chatila and Laumond
suggested to model objects by polyhedra and to use them to
split the space into a limited number of regions corresponding
to rooms, doors and so on. However, these authors only
made a proposal and did not provide algorithmic details. Elfes
developed algorithms for building occupancy maps using com-
puter vision. He also suggested deriving large-scale topological
models but he did not propose an algorithmic solution to this
problem.

Recently, Thrun [5] has implemented a method for building
large-scale metric-topological maps of indoor environments.
After a global occupancy map has been learned, a topological
representation is generated by splitting the metric map into
a small number of coherent regions. Our method is related
to Thrun’s approach in several respects. The first and most
obvious is the use of the neural sensor interpretation technique
to provide the robot with a robust local perception. In both
methods the neural sensor interpretation results in a local
occupancy grid modeling the space surrounding the robot.
However, the two approaches differ in the way this local
grid is subsequently used. Thrun’s robots utilize the local
grid to acquire global geometrical maps. The neural sensor
interpretation is constantly used, and subsequent local grids
are integrated to form a global metric grid. In our approach,
robots use the local occupancy grid only when they need to
model obstacle boundaries by straight lines. Once a boundary
has been approximated by a straight line, the neural sensor
interpretation is not used any further and robots rely on
their raw sensor readings. The second similarity between our
method and Thrun’s approach concerns the integration in a
single method of the geometrical and topological paradigms
for map learning. Nevertheless, the two approaches build
quite different geometrical representations: global grid-based
maps in Thrun’s method versus variable-resolution partitioning
in our method. Finally, our approach abstracts the topolog-
ical map from the geometrical representation on-line, while
Thrun’s approach does it off-line and only after the whole
global map is available.

The parti-game algorithm for the acquisition of control
policies proposed by Moore and Atkeson [8] also creates a
variable-resolution partitioning, but only for allowing simu-
lated robots to learn good trajectories to goal regions. There
are at least three main differences between parti-game and
our method. First, since parti-game is based only on collision
information, the number of partitions created for a given
environment is much higher than ours. Second, one assumption
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(a) (b)

Fig. 1. An example of partitioning update. (a) A partition that does not
represent a homogeneous perceptual situation. (b) The resolution of the
partitioning is increased to model the obstacle.

of parti-game is that the size of the environment has to be
known. Third, parti-game has a high computational cost that
may prevent on-line operation.

The proposed method also bears some similarities to Taylor
and Kriegman’s approach for allowing a mobile robot to
explore previously unknown environments [17]. Their al-
gorithm also models the environment by means of local
representations, and it builds a relational map by recording the
relationships between these local models. In their approach,
however, exploration relies on vision and each local model is
explicitly associated with a visually distinct and recognizable
landmark. Our robots do not use vision, and the concept of
landmark is just implicitly contained in the relational map
derived from the variable-resolution partitioning.

III. REAL-TIME MAP LEARNING

The proposed method allows a robot to model a struc-
tured indoor environment by means of a variable-resolution
partitioning Each partition is a local model that
codifies the robot’s knowledge about the corresponding area
of the world. The aim is to create partitions that represent
perceptually homogeneous areas. For instance, the partition
shown in Fig. 1(a) does not meet such a requirement, because
it represents both a free space and an obstacle. We call such
a partition anincoherentpartition.

An important assumption of the current implementation of
our method is that all meaningful obstacle edges are aligned
with either the - or the -axis. Such a simplified world allows
the robot to create variable-resolution partitionings made by
rectangular partitions only. This reduces the complexity for
updating and maintaining the partitioning by making the
spatio-geometrical properties of the created partitions simple
to treat.

The proposed method relies on a modular architecture. In
particular, five principal modules can be identified.

1) Neural Sensor Interpretation: Sensory information is
interpreted by a feed-forward neural network. This sen-
sor interpretation results in a local occupancy grid that
improves the local perception of the robot.

2) Identifying Obstacle Boundaries: The proposed method
consists of approximating obstacle boundaries by
straight lines and using them to build the partitioning
[see Fig. 1(b)]. This is mainly achieved by means of the
neural sensor interpretation: every time the robot needs

(a) (b)

Fig. 2. (a) For a given cell(i; j) 2 G; the input of the neural networkN
consists of the readings of the three sensors oriented toward the(i; j) cell
(s1; s2;, ands3) and of the polar coordinates of the cell(i; j) with respect
to the robot. (b) For a given cell(i; j) (identified by its polar coordinates
relative to the robot) and a given sensory patterns = (s1; s2; s3); the output
of network is interpreted as the conditional probability Prob(occij js):

to identify an obstacle edge, it aligns with and follows
that edge, and it uses the local occupancy grid to find
the approximating line.

3) Partitioning Update: Every time the robot perceives
an unknown obstacle, it increases the resolution of the
partitioning to include it. To do this, it approximates
all the obstacle edges by straight lines. Once the whole
perimeter of the obstacle has been modeled, the resolu-
tion of is increased in the local area containing the
obstacle—with the new partitions modeling the obstacle.

4) Exploring the Environment: The robot is always explor-
ing the environment to improve its current map. Given
the current partitioning the explorer module selects
as target the partition corresponding to the least known
region of the environment.

5) Planning and Action: Given the target partition selected
by the explorer, theplannercomputes the optimal path
across Then, low-level controllers actually bring the
robot there.

The above modules are described in more detail in the fol-
lowing sections.

A. Neural Sensor Interpretation

A proper sensor interpretation is useful because sensor
readings are typically corrupted by noise whose distribution
is generally unknown. Another concern is the robot’s require-
ment to interpret all its sensor readings simultaneously. To
address these issues we follow the approach proposed by
Thrun [5] where a feed-forward neural network builds
a local occupancy grid from sensor readings. The local
occupancy grid, which consists of cells, is in fact a local
view that moves and rotates with the robot. The choice of the
size and the resolution of the grid is given by a trade-off
between computational cost and reliability of edge detection.

For a given cell the input of consists of
(Fig. 2)

1) the readings of the three sensors oriented
in direction of ;
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2) the polar coordinates and of the center of the cell
with respect to the robot (the angleis calculated

with respect to the first of the three closest sensors).

For each cell the network produces a value
Prob that measures the probability of this cell being
occupied given the sensory pattern

It is worth noting that once such a network has been trained,
it can be used by the robot in several differently structured
indoor environments. Another important feature is that this
sensor interpretation strategy isplatform-independent, in the
sense that it can be applied on mobile robots having different
sensor configurations.

1) Training the Neural Network:Training data are of the
form where is the desired output.
They are generated by randomly placing and orienting the
robot in a known environment (i.e., an environment where
the position of obstacles is known). For each position and
orientation of the robot, the elements of the local
grid are randomly sampled. The target output is the
true occupancy state of computed by considering the
intersection between the cell and the known obstacles.

The neural network is trained off-line by a gradient
descent method [18]. Input and output values are normalized in
the range [0,1]. As stated before, the networkproduces the
conditional probability Prob given the sensory pattern

[5]. It has been shown that the output of a
neural network can be interpreted as a posterior probability
if the network is trained by minimizing the cross-entropy
error function [19]. We trained the network by using
back-propagation with momentum term [18] to minimize the
cross-entropy error function

where sums over all training examples, and and are
the target and the actual output associated to theexample,
respectively.

We adopt an adaptive learning rateInitially and
then its value decreases linearly until it reaches a sufficiently
small value If, at this point, the error is still higher than
desired, then the value ofis restored to and the process
is repeated again. This cycle is iterated until the performance
of the network does not improve significantly. The rationale
behind this technique is that whenis increased, the weight
configuration is perturbed so as to climb the walls of the basin
of attraction it was in.

The architecture of is built incrementally [20]. Initially,
the network has just one hidden unit and, as learning proceeds,
a new hidden unit is added when the current network cannot
reduce the error any further. The new unit is added
either in an existent hidden layer or in a new one. By
modifying the network architecture, the shape of the weight
space is also changed, which might remove the local minimum
where the network is trapped. Our experimental evidence
shows that when re-training with a new hidden unit the
performance of the network improves. This idea can help to
build a “minimum-size” network to solve the task at hand. In
preliminary explorations we observed that the performance of

(a) (b)

Fig. 3. An example of neural sensor interpretation. (a) A part of the
environment and the robot within it. The robot is following the horizontal
wall to approximate it by a straight line. The snapshot has the same area of
the local gridG: The robot sensor readings (sonars in this case) are represented
by radial lines. (b) The corresponding local grid obtained by using the network
N and integration over time. The darker a cell, the higher its probability of
being occupied.

the incrementally-built network is better than the performance
of a network trained from the beginning with the same final
architecture.
2) Integration over Time of Occupancy Probabilities:As pre-
viously mentioned, the robot is using the network as it
follows obstacle boundaries. Then, consecutive neural sensor
interpretations can be integrated over time in order to obtain a
more reliable local occupancy grid If, for a given sensory
pattern at time the output of is the conditional
probability Prob then, given consecutive sensor
readings the occupancy probability for the cell

can be thought as Prob Time in-
tegration is achieved by applying Bayes’ rule for estimating
this probability [1], [5]

Prob

Prob
Prob

Fig. 3 shows an example of a local grid built by using
the network to interpret the sensor readings, and by using
Bayes’ rule to integrate over time. This example highlights
some benefits of this approach. For instance, it illustrates
how the neural interpretation can compensate errors due to
specular reflections (e.g., the white ray entering the wall,
in the upper right corner). In addition, notice the obstacle
in the lower left corner of Fig. 3(a): the integration over
time of consecutive interpretations produces an acceptable
“reconstruction” [Fig. 3(b)] despite the limited current sensory
information (just one of the sensors is currently detecting the
obstacle).

B. Modeling Obstacle Boundaries

The use of a neural network to interpret sensor data has been
originally proposed by Thrun [5] to acquire global geometrical
maps. In our approach, however, the robot uses the gridonly
to identify the boundary of the obstacle it is aligned with and
trace a line (Fig. 3). A boundary consists of those cells
with Prob that are closest to the robot. The
parameter permits to define the threshold above which the
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(a) (b)

Fig. 4. (a) The robot uses the gridG to identify the boundary of the
obstacle it is aligned with. (b) A boundary consists of cells(i; j) with
Prob(occij) > 1� � that are closest to the robot. To determine a straight line
that goes through these cells we use the�2 method.

occupancy probability provided by the neural network codes
for an obstacle. The problem, then, is to find a straight line
that goes through these cells.

Consider the local grid at time depicted in Fig. 4. A
sampling window [Fig. 4(b)] defines the width of the set of
cells to be fitted by a straight line. Each cell in the
sampling window is thought as a point

Now, consider, for each the
minimum for which the relationship Prob
holds. This yields a set of points Then, the
problem is to find the best straight line

approximating this set of points. To determine this line we use
a simple version of the method [21].

As previously mentioned, the straight lines modeling the
obstacle edges are used to build the partitioning[see
Fig. 1(b)]. In order to keep the complexity of as low as
possible, the robot adopts a simple strategy. Every time it finds
the straight line modeling the current obstacle boundary, it
checks whether might be aligned with any of the existing
lines. If there is a line oriented as and the orthogonal
distance between and is smaller than a threshold then
the robot makes the line to be aligned with This simple
technique also permits to create a map that fits structural
regularities of the environment (e.g., the two in-line walls
holding a door frame).

The accuracy of depends on two factors, namely the
resolution of the local grid and the accuracy of the straight
lines approximating the obstacles. The combined effect of the
neural sensor interpretation and of the line fitting method is
such that fine details of the environment are not included
in the partitioning process. Indeed, the aim is to model the
spatial structure of the world qualitatively. Fine details are not
necessary for high-level planning and they can be handled by
a low-level reactive module.

C. Partitioning Update

Every time the robot perceives an unknown obstacle it
decides to increase the resolution of the partitioningto
model it. The robot approaches the obstacle and aligns with
one of its boundaries. Then, it follows that boundary and starts

using the local grid and the method. As soon as the robot
finds the straight line that approximates this first boundary,
it stops utilizing the local grid that is, the neural sensor
interpretation. Then, it moves along that line until the end of
the boundary utilizing the raw sensor readings only. Then,
the robot rotates to align with the new boundary and starts
modeling it by following the edge and using the local grid
and the method. Again, as soon as the approximating line
is found, the robot stops using the neural sensor interpretation.
At this point, it computes the intersection between the current
straight line and the previous one to identify the corner
previously visited. Then, the robot moves until the end of
the boundary using the raw sensor readings only, rotates to
align with the new boundary and repeats the process. This
process stops when the robot has modeled the whole obstacle
(i.e., when it has traveled around the whole perimeter of the
obstacle). This stop condition is recognized by taking into
account the two straight lines modeling the first and the second
obstacle boundaries. Every time the robot reaches the end of a
boundary, it checks if it is meeting the line modeling the first
obstacle edge. If this is the case, it rotates to align with the
new boundary, it models it and it goes to the end of the edge.
If there it meets the line approximating the second obstacle
edge, it considers the whole obstacle as modeled. Notice that
this procedure results in recognizing the first corner created
during the obstacle modeling process. However, the fact of
looking for lines instead of points (corners) provides a more
robust corner identification process despite the odometry error.

Once all corners of an obstacle have been memorized, it
is possible to increase the resolution of the partitioningto
model the new obstacle: each new corner is connected to the
closest perpendicular edge of one of the existing partitions [see
Fig. 1(b)]. This strategy always creates rectangular partitions.
It is worth noting that the resolution of is increased only
in local areas containing unknown obstacles. This meets our
aim of having a higher map resolution only in critical areas
of the environment.

Two adjacent partitions are considered redundant if both
represent either obstacle or free space and they can be merged
to produce a rectangular partition. It might happen that increas-
ing the resolution generates a redundancy in the partitioning

After updating redundant partitions are removed over
all Thus the resulting model is as compact as possible and
its computational complexity is kept low.

After updating the partitioning the robot stores the
knowledge concerning physical transitions between new
partitions. In particular, the robot keeps a databaseof
negative experiences memorizing the “forbidden transitions”
between the new partitions containing the obstacle and
the adjacent partitions. A negative experience between
a partition and a partition is stored as a triplet
of the form In the example of Fig. 1(b),
the database would be updated as follows:

The database is the
robot long-term memoryof the spatial relationships between
partitions and it is used by the planner (Section III-E) to derive
a topological graph from the partitioning
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D. Exploring the Environment

An important concern of the proposed method is to devise an
efficient exploration of the environment in order to accelerate
the map learning process.

Since the environment is initially unknown, the robot begins
with an empty partitioning (i.e., At this time, it
starts exploring by moving along a straight trajectory in a
randomly chosen direction. As soon as it detects an object, it
starts creating the variable-resolution partitioning to model it.
When exploration is achieved by selecting a target
partition, moving across the environment to reach it, and,
finally, exploring the target partition exhaustively. As soon as
the robot detects an unknown object (either within the target
or along the path leading to it), it gives up exploration and
starts updating the partitioning When the unknown object
has been modeled, exploration is resumed by selecting a new
target partition.

The explorer is the module responsible for the choice of
the target partition. We adopt an active learning technique
[12]: the robot selects the next region to be explored so that
it obtains an environmental map with the smallest possible
number of exploration steps. This active behavior is obtained
by making the robot always explore the least known region
of the environment.

Active exploration is based on estimating the exploration
utility of each existing partition and selecting the one which
maximizes it [13], [22]. This heuristic real-valued function
measures “how much a partition is worth to be explored.” To
define we use a technique calledcounter-based exploration
with decay[13]. It gives higher utility to partitions that have
been visited less often and less recently. A counter keeps
track of the number of occurrences for each partition
(i.e., how many times that partition has been visited). In order
to take into account when a partition has been visited, the
counter is multiplied by a decay factor Thus,
whenever the explorer module is triggered to select a new
target partition, it updates the exploration utilities as follows:

where is a constant factor.
Finally, the explorer selects as target the partition that

maximizes :

E. Planning and Action

Given the target partition, the robot invokes theplanner
to compute a trajectory toward it. The planner derives a
topological graph from the current partitioning where

1) nodes correspond to partitions;
2) arcs are derived from the long-term memory of expe-

riences The node corresponding to the partition
is connected to the node corresponding to the adjacent

Fig. 5. The map learning method.

partition if that is the transition
is not characterized by a negative experience.

Let the number of partitions forming the variable-resolution
partitioning Notice that the number of nodes in the graph is
always smaller or equal to because only partitions represent-
ing obstacle-free areas are actually mapped into nodes. Then,
starting from the node corresponding to the current partition,
the planner searches the graph for the shortest path to the node
associated with the target. Due to the low complexity of the
learned partitioning this process is not expensive.

Once the optimal path has been determined, a low-level
planner computes the robot’s trajectories between adjacent
partitions in the path. In the current implementation the robot
always follows straight trajectories parallel to theand axes
of the environment. This simple motion strategy minimizes
errors in the dead-reckoning system. If the robot has to move
from the partition to the adjacent partition and is the
boundary between them, the robot first moves parallel tountil
it is in front of its middle point. Then, it moves perpendicular
to until it crosses the boundary.

Finally, a reactive low-level module controls the robot
displacements by handling small inconsistencies of the map
(i.e., fine details not being modeled) and possible moving
obstacles (e.g., people). When modeling new obstacles, this
same reactive module makes the robot follow the obstacle
boundaries.

F. Algorithm Overview

The proposed map learning method results in a cyclical
process dominated by exploration and model update activities.
The robot is continuously exploring the environment, and
exploration is driven by the acquired knowledge. The robot
only gives up exploration to incorporate unknown obstacles in
the model by updating the partitioning resolution. An outline
of the whole algorithm is given in Fig. 5.
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(a) (b)

Fig. 6. (a) TESEO, a Nomad 200 mobile robot. It is equipped with a ring of
16 sonar sensors on the top, a ring of 16 infrared sensors in the middle and
20 tactile sensors at the bottom. Each sensor ring covers 360�. (b) Schematic
top-view of the robot.

(a) (b)

Fig. 7. (a) The Khepera mobile miniature robot. It has eight infrared sensors:
Six sensors cover the frontal 180� of the robot and two sensors face backward.
(b) Schematic top-view of the robot.

IV. EXPERIMENTAL RESULTS

In this section we present experimental results obtained
with two quite different mobile robots, namely a Nomad 200
(Fig. 6) and a Khepera (Fig. 7).

The Nomad 200 [Fig. 6(a)] has a diameter of about 50 cm
and it is about 80 cm tall. This robot is equipped with 16
ultrasonic (sonar) sensors and 16 infrared sensors providing
distance information from objects and 20 tactile sensors detect-
ing collisions. Sonars and infrareds are evenly placed around
the perimeter of the turret, whereas the tactile sensors cover
all the perimeter of the robot below the turret. Sonar sensors
can detect objects located at a distance between 15 cm and 6.5
m, whereas infrared sensors have a maximum range of about
40 cm. Each sensor ring ensures a 360coverage [Fig. 6(b)].
Finally, a dead-reckoning system permits self-localization by
keeping track of the robot position and orientation. The Nomad
200 has three independent motors. The first motor moves the
three wheels of the robot together, the second one steers the
wheels together and the third motor rotates the turret.

The Khepera platform [Fig. 7(a)] is a miniature robot having
a diameter of about 5.6 cm. In the basic configuration used here
it is 3.6 cm tall. A set of eight infrared sensors allows the robot
to perceive objects within a maximum range of about 4 cm.
Six of the infrared sensors are covering the frontal 180of the
robot while the remaining two sensors cover approximately
100 on the back side [Fig. 7(b)]. A dead-reckoning system is
used for the auto-localization task. Finally, two motors move
the two robot wheels independently.

(a)

(b)

Fig. 8. (a) A corridor of our building used as testing environment. (b) The
corresponding learned map (the right side of the map corresponds to the end
of the corridor). Black rectangles represent obstacles (i.e., walls and cabinets),
thin lines partitions. The black circle represents the robot at the initial location.
Grey partitions represent areas of the world classified as obstacles by the robot.

The differences between the two robots, especially their sen-
sor capabilities and sensor configurations, made it interesting
to test our method on both of them.

A. Experiments with the Nomad 200

Fig. 8 shows one of the corridors of our building and the
corresponding learned map. The variable-resolution partition-
ing consists of only 21 partitions. The portion of the corridor
modeled measures about m. The map was built with
all doors closed. For the neural sensor interpretation, we use
a local grid of cells, each covering an area of about

cm. The robot occupies the central cells. Notice
how the map does not represent fine details such as small
gaps between cabinets. Also, the map has captured the main
environmental regularities. This is mainly due to the alignment
procedure that makes a new boundary line move if there exists
already another line that is sufficiently close and has the same
orientation.

In order to illustrate the performance of our approach in a
more complex environment, we also report results obtained
in simulation [23]. The Nomad 200 simulator models the
robot’s motion system (i.e., translation, steering, and turret
rotation), and the robot’s sensor system (i.e., tactile, infrared,
and sonar) adequately. Uncertainty of the motion control is
modeled by keeping track of two positions of the simulated
robot, namely the encoder position and the actual position.
The encoder position is calculated by odometry from the ideal
commanded velocities, while the actual position is calculated
from perturbed velocities. The perturbation on commanded
velocities cares for the uncertainty in the control system,
modeling robot’s drift and slippage. Sensor data, which are
computed based on the actual position of the robot, are
modeled by considering the presence of noise as well. Both
models, for motion and sensor readings, rely on a set of
parameters that can be adjusted to fit real data.

Fig. 9 shows the simulated world used for carrying out
the experiments. It simulates a real environment of about
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Fig. 9. The environment used for the Nomad 200 simulator. It simulates a
real indoor environment of about14:5 � 10:5 meters.

Fig. 10. The environment and the final map. Black rectangles represent
obstacles. Grey partitions represent areas of the world classified as obstacles
by the robot.

m. The neural sensor interpretation uses the same
local grid as the real robot. Fig. 10 shows the environment
as well as the final map. Qualitatively, the partitioning models
the free space quite accurately. Even if the map does not
model some small protuberances of the obstacles properly,
these “inconsistencies” do not harm the robot performance
since they are useless at planning time and are handled by
the reactive module. The learned map has a small number of
variable-resolution partitions which permits a fast
planning of robot trajectories. As discussed in Section III-B,
every time the robot models a boundary by a straight line,
it also checks whether the new line can be aligned with an
existing one. This strategy results in a map that preserves
environmental regularities. This can be observed in Fig. 10
considering partitions modeling doorways and door frames.
In addition, since new lines are aligned to previously created
lines, this technique permits to create a map that partially
compensates for cumulative dead-reckoning errors.

Since partitions are implicitly labeled as either “occupied”
or “free” by the robot, a simple way of measuring quanti-
tatively the accuracy of the learned map is to compute the
misclassified fraction of the total area of the world. Let
be the sum of the surface of misclassified partitions (free ones
classified as occupied and occupied ones classified as free)
and let be the total surface of the environment. Now, the
error is:

(1)

(a) (b)

Fig. 11. (a) Effective infrared sensor coverage. Notice the two 40� blind
spots on the left and right sides. (b) Average error distribution obtained by
evaluating the trained network on a test set of 5000 patterns. The darker a
cell, the higher the corresponding average error.

For the map of Fig. 8(b) whereas for the final
map of Fig. 10

B. Experiments with the Real Robot Khepera

In this section we present results obtained with a real mobile
robot Khepera. The local grid has cells, each
covering an area of cm. The robot occupies the
central cells.

As already mentioned, the Khepera sensor configuration
does not provide a 360-degree coverage [Fig. 11(a)]. More-
over, on-board infrared sensors can only detect objects which
are very close. Fig. 11(b) shows the error distribution over the
local grid surface obtained by evaluating the performance of
the trained network on a test set of 5000 patterns. The darker
a cell, the higher the corresponding mean error. Fig. 11(b)
shows that the sensor interpretation provided by the trained
network helps to partially compensate for incomplete sensor
coverage. This extrapolation capability of the neural network
is due to the fact that the obstacles used to train the network
are walls, whose length scale is typically larger than the 40
blind spot. Notice that, due to the short-range response of
the sensors, the performance of the network is worse in the
proximity of the corners of the grid. However, while the robot
is modeling an object boundary, the integration over time of
consecutive neural sensor interpretations (see Section III-A2)
helps to reduce this effect.

In order to improve the self-localization capabilities of
Khepera we resort to off-line techniques for measuring and
correcting systematic odometry errors. We use the experimen-
tal procedureUMBmark [24] to calibrate the two dominant
systematic error sources, namelyunequal wheel diameters

and theuncertainty about the effective wheelbase
This technique measures errors and quantitatively and
then derives the compensation factors to be included in the
control software. We also apply another simple procedure for
odometry calibration. We make a set oftest runs in which
the robot moves straight for a given distanceFor each run

the offset between the asked nominal distanceand the
actual distance is observed. Then, the expected uncertainty
offset is estimated by averaging over all test runs; i.e.,

is used in both the control software
and in the odometry computation to compensate the observed
offset.
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(a) (b)

Fig. 12. (a) The environment used for the Khepera and the robot within it.
It is a scaled (about 1:14) wood model of our laboratory covering a surface
of about100� 60 cm. (b) The learned variable-resolution partitioning. Grey
partitions represent areas of the world classified as obstacles, whereas the
black rectangles represent the actual obstacles.

Fig. 12(a) shows the real testing environment. The environ-
ment extends over a surface of about cm. Fig. 12(b)
shows both a two-dimensional representation of the world and
the learned map. The resulting variable-resolution partitioning
has a very small number of partitions The low
complexity of the model matches the low complexity of the
geometrical structure of the real environment. For the map
shown in Fig. 12(b) the fraction of the total area of the
environment which has been misclassified (1) is

Again, the alignment technique discussed in Section III-B
helps to exploit the high regularity of the environmental
structure and to partially compensate for odometry errors. This
results in a very regular partitioning.

Fig. 13(a) shows the topological graph corresponding to the
acquired partitioning. The low complexity of the topological
graph is a consequence of maintaining as compact as possible
the partitioning Then, given a target region, planning a
path leading to it is an inexpensive process. Consider the path
selected by the planner to go from position START to the
position GOAL. Given this path, the low-level planner com-
putes the actual trajectories between adjacent partitions and the
reactive controller takes the robot along them (Section III-E).
Fig. 13(b) shows the trajectory effectively followed by the
robot. As mentioned in Section III, the robot always moves
parallelly or orthogonally to the and axes of the environ-
ment in order to reduce wheel slippage and drift.

As described in Section III-D, the robot tries to optimize
its exploration process by always visiting those partitions that
maximize the exploration utility In order to evaluate the
exploration process, we define the following utility function:

where is the number of partitions of at time
gives the global mean exploration utility corresponding to
the partitioning after exploring trajectories (i.e., after the

(a) (b)

Fig. 13. (a) Topological graph corresponding to the map of Fig. 12(b). (b)
Robot’s trajectory to go from START to GOAL. Given the path highlighted
in (a), thelow-level planneris used to compute the actual trajectories between
adjacent partitions, and the reactive controller brings the robot along them.
Trajectory plots are built using calibrated odometry readings from the physical
robot.

Fig. 14. Exploration performance during the learning process. The diagram
shows the global mean exploration utility curves of our active exploration
method (a) and of a random exploration (b). Active exploration overcomes
random walk mostly in the first part of learning. Then, once the standard
deviation ofUm(t) decreases, random walk reports a closer performance.

robot has run times the map learning algorithm of Fig. 5).
The lower the value of the better the environment is
explored. Fig. 14 compares the performances of the used
active exploration and of a random exploration during the
map learning process (of the environment of Fig. 12). is
kept equal to 1 until at least one partition has not yet been
visited. The diagram shows that active exploration overcomes
random walk. The benefit of choosing carefully the next target
partition is higher in the first part of the learning process. The
small cardinality of the successive partitionings increases the
probability of randomly selecting the most useful partition to
be explored next. Furthermore, as the environment becomes
uniformly explored, the standard deviation of decreases
and whichever partition is chosen for exploration yields the
same information. Therefore, the performance difference be-
tween the two strategies is reduced. This residual difference is
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proportional to the complexity of the environment. Thus both
strategies achieve similar performances after a while.

V. DISCUSSION

The proposed map building method attempts to achieve
a good trade-off between representation accuracy and learn-
ing efficiency. Indeed, using variable-resolution representation
relates the model complexity to the complexity of the envi-
ronment: the aim is to have a high resolution only in critical
areas (e.g., around obstacles) even if the map does not model
fine details. The low complexity of the learned variable-
resolution partitioning is a crucial feature for saving memory
and time resources. If, for instance, we applied a standard
geometrical approach to learn a global grid-based map of the
environment shown in Fig. 12(a), then an appropriate grid
resolution would consist of cells of cm1. In this case, the
two-dimensional evenly-spaced grid would consist of about
6000 cells. The computational complexity of managing such a
map does not reflect the actual geometrical complexity of the
physical environment. Having a fine resolution to represent
large free areas of the world is not appropriate. Another
important concern is the high cost of planning trajectories in
such a representation. Searching an optimal path in a space of
6000 states is not a trivial and cheap process. On other hand,
the map shown in Fig. 12(b) consists of just 19 partitions.
This requires a small amount of memory for storing the
adjacency structure representing the partitioning, and of time
for managing it. Moreover, the simplicity of the topological
graph derived from such a partitioning permits inexpensive
path planning.

Computational efficiency is further improved by a limited
use of the neural sensor interpretation—and, consequently,
the integration over time. Building a local grid
(Section III-A) requires activations of the neural network
in order to compute the occupancy probability of every cell. In
our method, as mentioned in Section III, the robot usesonly
to approximate the boundary of the obstacle it is following, a
process that generally takes only a few steps. Once the robot
has found a straight line approximating the boundary, it stops
computing and relies on its raw sensor readings to reach the
end of the boundary.

An important assumption of the current implementation of
our method is that all the obstacles are parallel or perpendicular
to each other. This orthogonality assumption results in sim-
ple variable-resolution partitionings consisting of rectangular
partitions only. This reduces the complexity of treating the
underlying geometrical properties (e.g., mutual spatial relation-
ships between adjacent partitions). This assumption also allows
the robot to move along simple trajectories, which reduces the
risk of wheel slippage and drift. In order for the method to
deal with more general environments, this assumption must
be removed. In this case, the variable-resolution partitioning
would consist of polygonal partitions, which would make it
more difficult to update and maintain the model.

1Given the Khepera features, grids with a lower resolution could fail to
model the geometrical structure of the world accurately (see Section IV-B).

A critical aspect of our approach is that it relies on good
robot self-localization capabilities. Currently, position and
orientation of the robot are determined by dead-reckoning.
We have incorporated some strategies to increase the odom-
etry accuracy, namely off-line compensation of systematic
errors (Section IV-B) and generation of straight trajectories
(Section III-E), that have proven sufficient during all experi-
ments carry out so far. However, robots must be endowed with
on-line calibration techniques if we want them to work for
longer periods of time and to follow more flexible trajectories.
To this end, we are incorporating two techniques to the
current approach. The first consists of using known corners
as calibration points for the robot. During map building the
robot memorizes the relative position of the corners in every
partition. Then, every time it goes through a known corner, it
calibrates its odometry system with the position of that corner.
The second technique is based on the idea of using the neural
sensor interpretation to learn a local model of every transition
between adjacent partitions. Then, whenever the robot is in
the vicinity of the boundaries of one of the partitions, it uses
the correlation of the local grid (constructed on-line as the
robot moves) with the learned local model to correct possible
errors of the dead-reckoning system [25], [26].

The environments used so far for evaluating our method
were all static. The proposed approach could be extended
to deal with dynamic environments by modifying the local
representation of areas of the environment that have changed.
The use of a decay factor make the explorer drive the robot
to regions not recently visited, and thus the robot might detect
dynamic regularities such as doors. As a consequence, it might
modify the model to incorporate changes such as open (closed)
doors that were previously closed (open). However, the current
implementation of our approach does not model this kind of
partitions as “dynamic;” i.e., it does not label them as regions
whose occupancy could change over time.

A limitation of our map learning approach is its inappropri-
ateness for small, cluttered areas. But in this kind of areas
reactive strategies have demonstrated their robustness and
efficiency, especially when learning is involved (e.g., [10]).
We plan to combine these two complementary approaches
(i.e., map learning and reactive learning) in a single navigation
architecture. If the robot enters a room that it cannot model, it
might resort to reactive strategies. It is worth noting that once
the environment has been partitioned into a topological map,
the robot must only learn efficient sensor-based strategies to
move from a given node to the neighboring ones. Thus the
acquired sensory-motor rules are goal-independent.
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