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(LTP) or depression (LTD). This observation has opened new perspec-
tives on the biophysical basis of learning and memory, but its quan-
titative impact on the information transmission of a neuron remains
partially elucidated. One major obstacle is the high dimensionality of
the neuronal input-output space, which makes it unfeasible to perform a
thorough computational analysis of a neuron with multiple synaptic in-
puts. In this work, information theory was employed to characterize the
information transmission of a cerebellar granule cell over a region of its
excitatory input space following synaptic changes. Granule cells have a
small dendritic tree (on average, they receive only four mossy fiber affer-
ents), which greatly bounds the input combinatorial space, reducing the
complexity of information-theoretic calculations. Numerical simulations
and LTP experiments quantified how changes in neurotransmitter release
probability (p) modulated information transmission of a cerebellar gran-
ule cell. Numerical simulations showed that p shaped the neurotransmis-
sion landscape in unexpected ways. As p increased, the optimality of the
information transmission of most stimuli did not increase strictly mono-
tonically; instead it reached a plateau at intermediate p levels. Further-
more, our results showed that the spatiotemporal characteristics of the
inputs determine the effect of p on neurotransmission, thus permitting
the selection of distinctive preferred stimuli for different p values. These
selective mechanisms may have important consequences on the encod-
ing of cerebellar mossy fiber inputs and the plasticity and computa-
tion at the next circuit stage, including the parallel fiber–Purkinje cell
synapses.

1 Introduction

Theoretically, neurons can be considered as transmitting devices encod-
ing information in terms of digital spike trains. Spikes are transmitted
between neurons at the synapses, where they are converted into analog
signals by elaborate nonlinear transformations based on the time-
dependent properties of neurotransmitter release and diffusion, postsy-
naptic receptor activation, and intrinsic electroresponsiveness. Synapses
undergo plasticity via activity-dependent modifications, such as long-term
potentiation (LTP) and depression (LTD) (Bliss & Collingridge, 1993; Bliss
& Lomo, 1973; Malenka & Bear, 2004). These modifications affect the
synaptic dynamics (e.g., by regulating the number of neurotransmitter
quanta released or the phosphorylation of postsynaptic receptors), and
ultimately they alter the computational and transmitting properties of the
whole postsynaptic neuron (Abbott & Regehr, 2004; Tsodyks & Markram,
1997).

Neuronal computation can be analyzed in terms of information content
by quantifying how much information the neural responses convey about
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the input stimuli (Bialek, Rieke, de Ruyter van Steveninck, & Warland, 1991;
Borst & Theunissen, 1999; Fuhrmann, Segev, Markram, & Tsodyks, 2002;
Quian Quiroga & Panzeri, 2009). In this framework, neurons are treated
as stochastic communication channels, and information theory (Cover &
Thomas, 1991; Shannon, 1948) provides the mathematical tools to mea-
sure their transmitting properties. Information theory has been used to
analyze neuronal computation and quantify the information transmitted
by a neuron following sensory stimulation (e.g., in the cat visual cortex:
Sharpee et al., 2006; in the fly visual system: Brenner, Bialek, & de Ruyter
van Steveninck, 2000; Brenner, Strong, Koberle, Bialek, & de Ruyter van
Steveninck, 2000; de Ruyter van Steveninck, Lewen, Strong, Koberle, &
Bialek, 1997; in the mammalian auditory system: Lu & Wang, 2004; Smith
& Lewicki, 2006; in the cricket cercal sensory system: Dimitrov, Miller,
Gedeon, Aldworth, & Parker, 2003; Roddey & Jacobs, 1996; Theunissen,
Roddey, Stufflebeam, Clague, & Miller, 1996; Theunissen & Miller, 1991; in
the rat somatosensory system: Wan et al., 2004). It has also been used to
characterize the relevant regions of a neuron tuning curve in relation to the
variability in its sensory encoding properties (Butts & Goldman, 2006) or
to characterize the adaptation in receptive fields to visual stimuli (Sharpee
et al., 2006). Information theory has been found useful to measure the effi-
ciency of information transmission at a single synapse (de la Rocha, Nevado,
& Parga, 2002; Fuhrmann et al., 2002; Goldman, 2004; London, Schreib-
man, Hausser, Larkum, & Segev, 2002; Manwani, Steinmetz, & Koch, 2002;
Tiesinga, 2001), as well as to characterize the information transmission in
simplified integrate-and-fire neurons (Manwani et al., 2002; Zador, 1998),
or in more complex models, but under specific constraints, for example,
in the absence of interaction among presynaptic inputs (Manwani & Koch,
2001) or between inhibitory inputs and phase lags (Tiesinga, Fellous, Jose,
& Sejnowski, 2002). In the current work, an information-theoretic approach
was used to characterize the processing of a neuron over a region of its
excitatory input space and investigate how neuronal processing changes
following synaptic plasticity.

The mean information transmitted between the neuron responses r and
its inputs s can be quantified by using Shannon’s mutual information (MI)
(Cover & Thomas, 1991; Rolls & Deco, 2002; Shannon, 1948):

MI (R, S) =
∑
s∈S

∑
r∈R

p(s)p(r | s) log2
p(r | s)

p(r )
, (1.1)

where S and R are the input and output spaces, respectively; p(s) and
p(r ) are the a priori probability distributions; and p(r | s) is the conditional
probability distribution.

The MI measure can be used to estimate how much the neuron response
reflects the input stimuli versus the intrinsic variability of the neuron (e.g.,
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Figure 1: Cerebellar granule cell morphology and spike signal digitalization.
Confocal image of a biocytin-stained granule cell (GC) in the rat cerebellum (slice
preparation). Granule cells are characterized by a compact electrotonic structure
(D’Angelo et al., 1995; Saviane & Silver, 2006) and have an exceptionally low
number of synapses (four on average) (Eccles et al., 1967; Jakab & Hamori,
1988) receiving spike trains from the mossy fibers (MFs) (Chadderton et al.,
2004). GCs are numerous (∼1011 in humans) and constitute more than half of
the neurons in the brain. White trace: The membrane potential of a GC recorded
over 120 ms. Spike trains were digitized as strings of 0s and 1s, within discrete
time windows of 6 ms (time bins).

if the response is independent from the inputs, MI will be zero). Thus,
MI essentially measures the difference between the signal and noise en-
tropy (Borst & Theunissen, 1999) and provides a sound statistical tool to
dissect the relative contributions of different factors to neural information
transmission (e.g., spike count versus spike timing) under different condi-
tions (e.g., before and after LTP induction). One major factor that makes it
difficult to estimate the MI (see equation 1.1), and assess how synaptic plas-
ticity affects neuronal processing is the high dimensionality of the input-
output space (Borst & Theunissen, 1999). Indeed, assessing MI requires
determining the probability distribution of the output spike trains given
any input spike train. In general, this is impracticable even for a single neu-
ron due to the multiple mechanisms of nonlinear integration at individual
synapses; the large number of synapses, typically 103 to 104; and their loca-
tion on wide dendritic trees with complex electrotonic and active properties
(Borst & Theunissen, 1999; Koch & Segev, 2000).

To overcome these issues, the cerebellar granule cell, GC (see Figure 1),
was considered. GCs are tiny neurons (6 μm diameter) (Eccles, Ito, &
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Szentagothai, 1967; Jakab & Hamori, 1988) located at the major input stage
of the cerebellum, the granular layer. GCs play a major role in the early
stages of cerebellar computation, and their synapses have been proposed
to regulate the input-output relationship through gain modulation (Albus,
1971; Mitchell & Silver, 2003; Rothman, Cathala, Steuber, & Silver, 2009) and
long-term adaptation (Hansel, Linden, & D’Angelo, 2001; Philipona &
Coenen, 2004; Schweighofer, Doya, & Lay, 2001).

GCs have several remarkable properties. First, they have a compact elec-
trotonic structure (D’Angelo, De Filippi, Rossi, & Taglietti, 1995; Saviane &
Silver, 2006; Silver, Traynelis, & Cull-Candy, 1992), which maintains their
whole cell membrane equipotential, eliminating spatial effects on compu-
tation (Koch & Segev, 2000). Second, they have a low number of mossy fiber
(MF) afferents (4.17 on average) (Eccles et al., 1967; Jakab & Hamori, 1988),
which generates a tractable number of presynaptic input combinations and
greatly reduces the complexity of information-theoretic calculations. Third,
they have a stereotyped synaptic and excitable behavior, which simplifies
the implementation of models (D’Angelo et al., 1995). Fourth, MFs have
been shown to respond with high-frequency bursts to punctuate stimu-
lation (Arenz, Silver, Schaefer, & Margrie, 2008; Chadderton, Margrie, &
Hausser, 2004; Jorntell & Ekerot, 2006; Rancz et al., 2007), which have
been carefully characterized. Fifth, both GC output bursts and plasticity
at MF-GC synapses are controlled by input patterns and Golgi cell inhi-
bition (Mapelli & D’Angelo, 2007). The dynamics of repetitive stimulation
have been clarified to a considerable extent (Nieus et al., 2006; Saviane
& Silver, 2006; Sola, Prestori, Rossi, Taglietti, & D’Angelo, 2004). Finally,
MF-GC synaptic transmission is based on nonlinear transformations de-
termined by presynaptic short-term facilitation and depression, glutamate
spillover, postsynaptic AMPA and NMDA receptor gating, and multiple
voltage-dependent channel interactions regulating intrinsic electrorespon-
siveness (D’Angelo et al., 1995; Nielsen, DiGregorio, & Silver, 2004; Nieus
et al., 2006; Sargent, Saviane, Nielsen, DiGregorio, & Silver, 2005; Sola et al.,
2004). The mechanisms of synaptic transmission and plasticity at the
MF-GC synapses have been intensely investigated, revealing that LTP is
largely determined by a raise in the presynaptic neurotransmitter release
probability (p) (D’Angelo et al., 2001; Nieus et al., 2006; Saviane & Silver,
2006; Sola et al., 2004).

The study presented here focused on the effects of release probability (p)
changes at MF-GC synapses on the overall GC information transmission
properties. The same information-theoretic quantification was applied to
analyze data from numerical simulations of biophysical synaptic and GC
models, as well as data issued from in vitro intracellular GC recordings. At a
first level, the mutual information MI between MF inputs and GC responses
was measured as a function of release probability. Expectedly, MI increased
significantly with p, as MI is a measure of the information transmission aver-
aged over the entire input set considered for examination. A second level of
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analysis assessed the contribution of specific stimuli to information trans-
mission. For this purpose, the stimulus-specific surprise measure (Butts
& Goldman, 2006; DeWeese & Meister, 1999; Theunissen & Miller, 1991)
was used to quantify the optimality of single stimulus transmission (see
section 4). This analysis investigated which stimulus patterns were “pre-
ferred” by the neuron under different release probability conditions, and it
demonstrated that maximum synaptic release probability did not constitute
a necessary condition in order to achieve optimal transmission. Rather, for
a significant set of stimuli, the surprise values saturated at intermediate p
values (consistent with those found in brain recordings at MF-GC synapses:
Sola et al., 2004; at CA3-CA1 hippocampal synapses: Dobrunz & Stevens,
1997; and at neocortical pyramid-to-pyramid connections: Koester & John-
ston, 2005) with optimal information transmission occurring over a large
range of release probabilities (from about 0.4 to the maximum value tested,
i.e., 0.8). Finally, a third level of analysis concentrated on the spatiotem-
poral characteristics of the stimuli and quantified, for different p values,
the spike timing contribution to information transmission by means of the
surprise-per-spike measure (see section 4). The surprise per spike was typ-
ically higher for either long-correlated stimuli at low p or short-correlated
stimuli at high p.

The work presented in this letter provides a set of tools to investigate
neuronal coding and information transfer in the cerebellar granular layer
network, which enables a quantitative exploration of the relative impor-
tance of the coding strategies for different input patterns and synaptic
parameters.

2 Results

A first fundamental question is how the transmitting properties of a GC
vary under different release probability conditions (e.g., LTP). To this aim,
the average amount of information transmitted by the cell (i.e., the MI) was
measured (see section 2.1) computationally with a GC model and experi-
mentally. Experimental results were obtained with a limited set of stimuli;
the numerical simulations were used for corroborating the experimental
findings and extending them to a larger region of the input space. The ques-
tion of how changes in release probability shape the neurotransmission of
specific MF inputs is addressed in section 2.2 using the stimulus-specific
surprise. Finally, section 2.3 investigates how correlations across input spike
trains affect single-stimulus transmission and assesses the informative con-
tribution of single pulses in the presence of distinct spatiotemporal stimulus
structures and multiple presynaptic release probabilities.

2.1 Impact of Neurotransmitter Release Probability Changes on
Information Transmission. The average information transmitted by a sin-
gle GC was quantified before and after induction of long-term synaptic
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plasticity at MF-GC synapses, a condition shown to modify release prob-
ability at the MF synaptic terminals (Sola et al., 2004). MI analysis was
performed using experimental data obtained by whole-cell patch record-
ings of GCs during in vitro electrophysiological recordings (see section 4).
To measure MI, one to four MFs were stimulated by a set of spike trains,
according to a protocol inspired by the bursting discharge of GCs follow-
ing punctuate tactile stimulation in vivo (Chadderton et al., 2004). Because
our experimental techniques did not allow us to stimulate the four MFs
independently, this analysis could be done only over a limited input set
(16 distinct stimuli, each made of identical spike trains on the four MF in-
puts). The GCs responded with noisy spike trains that had higher average
frequency and occurred earlier after LTP (see Figure 2A). The neurotrans-
mitter release probability p was estimated before and after LTP induction
(see Supplementary Material).1 Because p was the average value over the
different synapses, it will henceforth be indicated with p̄. LTP caused an
average MI increase of 32 ± 4% for p̄ changing by 48 ± 5% (n = 9; paired
student’s t-test, p < 0.05). The average amount of information carried by
the firing frequency was 51%, meaning that half of the information transfer
was due to interspike temporal relationships.

The same stimulation protocol was employed to run the numerical sim-
ulations with the detailed GC model, and MI was measured for different p
values at the model MF-GC synapses. As shown in Figure 2B, MI increased
as a function of p̄ for both experimental and simulated data. The numer-
ical results predicted an increase in MI from 0.2 to 3.5 bits for p̄ varying
within the range [0.1, 1]. Due to the restricted input space explored (16 stim-
uli), MI tended to saturate when the number of simultaneously active MFs
was greater than 2 and p̄ >= 0.5 (see below). The vectors representing the
experimental MI changes during LTP fell within the limits of the model pre-
dictions for all the GCs examined. The similarity between experimental and
simulation results indicated that the model could predict the information
transfer dynamics following long-term synaptic plasticity. It also supported
the hypothesis that the major noise source of GCs is stochastic neurotrans-
mitter release, as anticipated by quantal analysis (Sola et al., 2004). A control
analysis focusing on the role of presynaptic depression and postsynaptic
receptor desensitization revealed that setting either one or the other to zero
affected spike timing only to a small extent (see Supplementary Material,
section S2.2), implying minor effects on information transmission.

The model permitted extending numerical simulations to the exper-
imentally impracticable case of independent activation of the four MF
afferents. Independent input spike trains (with a maximal frequency of
100 Hz) were generated at each of the four MFs, and all the possible

1Supplementary material referred to throughout the letter is available online at
http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00006-Arleo.
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Figure 2: Increases in neurotransmitter release probability enhance mutual
information in cerebellar granule cells: experiments and simulations with a
restricted mossy fiber input set. (A) A GC was maintained at a membrane
potential between −60 mV and −70 mV, and it was activated through MF stim-
ulations at the times indicated by the arrows. This protocol was repeated 25
times. The responses were recorded before and after delivering a theta-burst
stimulation (TBS) (Nieus et al., 2006) (five selected voltage traces are shown
superposed). In this cell, release probability was p̄ = 0.4 before and p̄ = 0.65
after LTP induction (see Supplementary Material for the p̄ estimation process).
Effective long-term potentiation (LTP) induction is demonstrated by earlier and
more intense spike activation (Nieus et al., 2006). (B) Mutual information (MI)
changed significantly as a function of neurotransmitter release probability, p̄.
The shaded regions show the MI values obtained with the GC model, whereas
the vectors indicate the experimental changes in MI before and after induction
of long-term synaptic plasticity in 10 GCs. The four regions (from bottom to
top) correspond to different numbers of active MFs (one to four). The lower and
upper borders of each computed region were obtained by setting the resting
potential of the GC model at −70 and −60 mV, the two experimental extremes,
respectively. LTP, associated with a p̄ increase, was observed in nine cases, while
in one case with very high initial p̄, LTD (long-term depression) was observed
associated with a p̄ decrease. Note that a 60 ms time window was used to sample
both experimental and simulated GC responses.

input combinations were explored (yielding an extensive set of 65536 stim-
uli; see section 4). Neurotransmitter release probability was also regulated
independently at each MF-GC synapse (from p = 0.1 to 0.8, in steps of 0.1).
Consequently the information transmission analysis was performed for
many different p combinations across the four MFs (e.g., pMF1 = 0.2, pMF2 =
0.8, pMF3 = 0.3, pMF4 = 0.4). Figure 3A displays a sample response of the
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Figure 3: Increases in neurotransmitter release probability enhance mutual in-
formation in cerebellar granule cells: simulation results with an extended mossy
fiber input set. (A) Responses of the model GC increased their time locking to
the start of the input stimulation after a large increase in release probability p̄
(five sample traces are shown superposed). (B) MI calculated by stimulating
the MF-GC synapses with the extended input set (k = 216 = 65536 stimuli) and
by varying the release probability p on the four MFs independently, within the
range [0.1, 0.8] (Sola et al., 2004). Each data point indicates the MI value cor-
responding to a different combination of p across the four MFs, and the x-axis
provides the p̄ averaged over the four MFs (therefore different MI values can
coexist for any value of p̄). The larger p̄ is, the larger is MI. Note that MI shows a
smooth increase rather independent from the specific p combination used over
the different synapses.

model GC to the same stimulus before and after simulated LTP (i.e., for
two different p combinations, with p̄ = 〈pMFi 〉i=1,4). Figure 3B shows that
the MI computed over the extended stimulus set increased as a function
of p̄ without saturating (in contrast to the limited set case of Figure 2B),
suggesting that the information transmission averaged over a large set of
MF stimuli may benefit linearly from increasing p̄ values.

2.2 Impact of Release Probability Changes on Single Stimulus Trans-
mission. The surprise measure (see section 4) was used to study the in-
fluence of release probability changes on the transmission of specific MF
inputs. For each p̄ value, all stimuli were ranked according to their surprise
value (e.g., in Figure 4A for p̄ = 0.42), and then different subsets of stimuli
were considered. In the subset of stimuli with surprise larger than 90% of
the maximum (see Figure 4B), after an initial rapid growth for 0.1 ≤ p̄ ≤ 0.5,
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Figure 4: Surprise as a function of neurotransmitter release probability: simula-
tion results. (A) The surprise measure was used to rank the extensive stimulus
set (k = 216 = 65,536 stimuli), which had p values set independently on the four
MFs within the range [0.1,0.8]. The example given here had an average (over the
four MF-GC synapses) release probability of p̄ = 0.42. (B) The mean surprise
for the (top 10%) most informative stimuli tended to plateau as p̄ increased,
even though MI increased with larger p̄ values (see Figure 3B). For a particular
set of p values, the mean surprise was obtained by averaging over the subset of
stimuli with a surprise larger than 90% of the maximum. Note that the subset
of stimuli contributing to the mean surprise may change with different set of p
values. (C) The mean surprise for the least informative stimuli—stimuli with a
surprise less than 5% of the maximum—was the only subset for which the sur-
prise was monotonously increasing with p̄. See also Supplementary Material,
figure S15 and section S2.4.
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the average surprise tended to plateau around 10.5 bits. This saturation
effect was observed for most of the stimuli (see Supplementary Material,
Figure S15 and section S2.4). Only the surprise averaged over the subset
of stimuli having a surprise smaller than 5% of the maximum showed a
quasi-linear increase with p̄ (see Figure 4C), suggesting that only these
stimuli continued to benefit from increasing p̄ values. Although on aver-
age the information transmitted by the GC increased monotonically with
p̄ (see Figure 3B), optimal single-stimulus transmission already occurred
at intermediate release probability values for most MF inputs, and further
increases in p̄ did not result in larger surprise values.

This finding suggests that transmission of specific inputs was differ-
entially affected by changes in presynaptic release probability. To begin
characterizing the properties of stimuli with optimal transmission at dif-
ferent p̄, simple features such as low versus high firing rate were first
considered. Low-rate stimuli tended to benefit the most from p̄ increases
(see Figure S16). The hypothesis that high-frequency stimuli (as opposed to
low-rate stimuli) had less to gain from an increasing release probability p̄
was confirmed by quantitative analysis (see Figure S17). But how does the
spatiotemporal structure of MF inputs affect neurotransmission in GCs?

2.3 Influence of MF Input Correlations and Spike Timing on Infor-
mation Transmission. In order to reveal the effect of input correlations
on information transmission, the relationship between the surprise of a
stimulus and the correlation C across the four MF spike trains forming the
stimulus was analyzed for each release probability, p̄ (similar to Butts &
Goldman, 2006). The coefficient C measured the average number of coinci-
dent input spikes across the four MFs (see section 4). The surprise tended to
increase as a function of C for all p̄ values, showing that correlated activity
across MFs improves GC neurotransmission (see Figure 5). Moreover, these
findings supplement the observations that GCs operate as coincidence de-
tectors (Moreno-Bote & Parga, 2004) requiring the coactivation of two or
more MFs (D’Angelo et al., 1995; Jorntell & Eckerot, 2006; Eccles et al., 1967).

In order to discard the influence of firing rate on information transmis-
sion and focus on the contribution of single spikes, the surprise per spike
was employed (see section 4). The entire MF stimulus set was ranked accord-
ing to the surprise-per-spike value for all release probabilities, p̄ (see Figure
6A). As shown in Figure 6B.B1, the stimuli with the largest surprise per
spike at low p̄ were characterized by long-correlated MF spike trains (the
blue-labeled patterns), whereas as p̄ increased, the stimuli with greatest sur-
prise per spike were short correlated trains (red-labeled stimuli). As shown
in Figure 6B.B2, the stimuli with lowest surprise per spike at small p̄ did not
have a stereotyped structure, whereas as p̄ increased, they rapidly became
stimuli with at most one spike per bin and therefore no coactivated spikes.

These findings were corroborated by analyzing how the surprise per
spike changed as a function of the correlation C for different release
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Figure 5: Surprise as a function of the correlation across the four mossy fiber
inputs: simulation results. The larger the correlation coefficient C of the stimulus
became, the larger was the information transmitted by the stimulus. C measures
the average number of coincident spikes across the four MF afferents and over
the four time bins (see section 4). This result holds for all release probability
values p̄ ∈ [0.1,0.8]. Nevertheless, the larger the p̄ value was, the more the
surprise saturated with higher C values.

probability values (see Figure 6C). At low p̄, the surprise per spike in-
creased quasi-linearly with the MF spike correlation C, with the peak of
the distribution occurring for long-correlated inputs (blue-labeled stimuli
in Figure 6C, left). By contrast, as p̄ increased, the distribution of the sur-
prise per spike as a function of C became non linear, and the peak of the
distribution increased and occurred for shorter correlated stimuli (red dots
in Figure 6C, center and right). Thus, an increase in p̄ enhanced the surprise
per spike of short correlated stimuli, whereas it favored only partially that
of long highly correlated stimuli, whose surprise per spike saturated and
even decreased at high p̄.

2.4 Influence of Specific Patterns on Information Transmission.
Why did long correlated stimuli benefit less, in terms of information per
spike, from p̄ increases than short correlated ones? A possible explanation
emerged by examining at different p̄ values the GC responses to distinct
MF stimuli. Figure 7A shows both the spikegram and the poststimulus time
histogram (PSTH) of the GC response to a long correlated stimulus (with
four bins with coactivated spikes). For p̄ > 0.5, spike doublets were elicited
by the second set of input spikes (second arrow, p̄ = 0.6 and p̄ = 0.8). The
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Figure 6: Surprise per spike as a function of release probability: simulation re-
sults. (A) The stimuli were ranked as a function of their surprise per spike for
every p̄ value [0.1, 0.8, step of 0.1]. Here, the release probability was equal for
all four MF synapses at the GC; that is, any permutation of the four input spike
trains was equivalent. This reduced the number of different stimuli to 3876 from
the initial 216 = 65,536. (B) The sets providing the largest (B1) and the smallest
(B2) contribution to the surprise per spike were selected for three different p̄ val-
ues. A different color map was chosen to identify the number of bins occupied
(blue, green, pink, red for 4, 3, 2, 1 bins, respectively). The number of spikes per
bin modulated the color map (e.g., red to orange for four to one spikes per bin,
within the red color map). At low p̄, the stimuli with the largest surprise per
spike were long-correlated spike trains: four bins with coactivated spikes at p̄ =
0.1 (e.g., the blue-labeled stimuli in B1). As p̄ increased, the stimuli with largest
surprise per spike were short correlated trains with two or three bins of coacti-
vated spikes at p̄ = 0.2–0.3, one to two bins at p̄ = 0.4–0.5 (red and pink-labeled
stimuli), and one bin for p̄ > 0.5 (red and orange-labeled stimuli). The stimuli
with the smallest surprise per spike had no stereotyped structure at low p̄,
whereas they were long noncorrelated patterns at high p̄ (e.g., the cyan-labeled
stimuli in B2). (C) Whereas the surprise per spike increased almost linearly with
correlation at the lowest p̄ value ( p̄ = 0.1), the peak of the distribution increased
and moved back as p̄ increased: starting with the highest correlated stimuli at
p̄ = 0.1 with four coactivated spikes in all four bins (blue dots), the peak at p̄ =
0.8 was found for a stimulus with a smaller correlation value, with four coacti-
vated spikes in only one bin (red dot and red-labeled stimuli). The distribution
of points at p̄ = 0.4 already showed saturation for the long correlated stimuli
while for the shorter correlated stimuli, the distribution started to peak.



2044 A. Arleo et al.

0

200

400
Tr

ia
ls

0

150

300

P
S

T
H

0

200

400

Tr
ia

ls

0

150

300

P
S

T
H

0

200

400

0

150

300

p = 0.3

p = 0.6

p = 0.8

Tr
ia

ls

60 80 100 120 140 16050 70

60 80 100 120 140 16050 70

Time (ms)

60 80 100 120 140 16050 70

P
S

T
H

60 80 100 120 140 16050 70

60 80 100 120 140 16050 70

60 80 100 120 140 16050 70

Time (ms)

MF1
MF2
MF3
MF4

time

0111
0111
1110
1111

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

Mean release probability

S
ur

pr
is

e 
pe

r 
sp

ik
e 

(b
its

/s
pi

ke
)

(p) 

B

A

Figure 7: Spike doublet appearance in GC responses in the presence of high
release probability: simulation results. (A) GC response (left: spikegram; right:
poststimulus time histogram, PSTH) to a long correlated stimulus at three differ-
ent p̄ values. The stimulus structure is shown in the top-right inset, and arrows
in the time line of the diagrams indicate the input spike timing. For p̄ = 0.6 and
0.8, the second set of spikes (second arrow) elicited a spike doublet, made of
one spike occurring at ∼61 ms, followed by another spike at ∼67 ms (before
the occurrence of the next set of input spikes at 70 ms). Note the double-peaked
PSTH around 70 ms. (B) Surprise per spike of the long correlated stimulus used
in A as a function of release probability.
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doublets disrupted the precise spike timing of the response (evident in the
PSTH after the second response spike), limiting the surprise per spike of
the stimulus despite the improved timing of the first response spike with
respect to the p̄ < 0.5 case (see Figure 7B). The longer the stimulus (i.e.,
the larger the number of bins with spikes), the higher was the probabil-
ity of eliciting spike doublet responses at high p̄ values (see Figure 8C for
other spike doublet examples). This behavior was probably determined
by the engagement of smoothly varying currents, such as the NMDA cur-
rent and the persistent and resurgent Na+ currents (D’Angelo et al., 2001;
Magistretti, Castelli, Forti, & D’Angelo, 2006; Nieus et al., 2006), with in-
creasing p̄. These currents drive repetitive firing and decrease the probabil-
ity of having precise stimulus-locked response spikes.

Which stimuli were the most sensitive to release probability changes? An
answer was obtained by considering the stimuli showing the largest and
the steepest ranking changes in their surprise-per-spike values following
release probability modifications. The largest surprise-per-spike increases
were observed for short stimuli with at least two coactivated spikes in one
bin (see Figure 8A and Supplementary Material, Figure S6). A similar spa-
tiotemporal structure was typically observed for the steepest, and therefore
most rapid, ranking transitions in surprise per spike (see Figure 8B and
Supplementary Material, Figure S7). For these short stimuli, their surprise
per spike increased significantly following small plasticity changes (� p̄ =
0.1). As shown by the spikegrams and the PSTHs of Figures 8A and 8B, the
stimuli with the largest and steepest ranking increases of surprise per spike
produced little activity at low p̄, whereas they elicited better time-locked
responses at high p̄. Finally, the largest and the steepest surprise per spike
ranking decreases were observed for long and highly correlated stimuli
(for which most of the bins were filled with three or four coactivated spikes,
Figure 8C and Supplementary Material, Figure S8).

3 Discussion

This letter provides an analysis of information transmission over a region of
the excitatory input space of a neuron. The direct method to compute mutual
information, MI (Zador, 1998), adopted in this work is usually computa-
tionally impracticable, and it was made possible by the peculiar structure of
the studied system, the cerebellar granule cell (GC) (see Figure 1). Indeed,
the fact that GCs are electronically compact and receive on average only
four mossy fiber (MF) excitatory inputs reduces the state-space dimension-
ality drastically. Still, the MF-GC system is representative because MF-GC
synapses call on the same complex mechanisms mediating information pro-
cessing at most brain synapses (D’Angelo et al., 1995; Nielsen et al., 2004;
Nieus et al., 2006; Sola et al., 2004).

The information-theoretic study presented here explored the relative
contribution of various factors (e.g., spike timing, specific input patterns)
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to neurotransmission and investigated how their interrelations changed
following long-term plasticity. The analysis showed that the MF-GC relay
transmitted information via firing rate, spike timing, and spike correla-
tion of MF discharge. Along with its ability to regulate spike frequency
and timing (Nieus et al., 2006), the increase of release probability (p) ac-
companying LTP regulated the amount of transmitted information (Zador,
1998). The main observation is that, on average, information was carried
almost equally by spike frequency and spike timing, and it increased quasi-
linearly with p. On the other hand, it was shown that maximizing release
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probability is not a necessary condition to optimize stimulus-specific in-
formation for most stimuli. Indeed, single-stimulus transmission reached
a plateau at intermediate p values for most MF inputs, with optimal trans-
mission taking place over a large p range (from intermediate values to the
maximum). Interestingly, in this range, the preferred stimulus patterns were
very sensitive to p variations; in other words, small variations of p changed
the subset of stimuli that are best transmitted by the cell. Such intermediate
release probability values reflect the values observed experimentally in the
cerebellar granular layer (Saviane & Silver, 2006; Sola et al., 2004), as well
as in other brain areas (e.g., neocortical pyramid-to-pyramid connections:
Koester & Johnston, 2005; CA3-CA1 hippocampal synapses: Dobrunz &
Stevens, 1997).

Figure 8: Surprise-per-spike changes for exemplar stimuli with highest in-
formation transmission modifications following release probability increases:
simulation results. (A–C) Information transmission for stimuli with the fourth
largest increase (A), the fourth steepest increase (B), and the fourth largest de-
crease (C) in the rank of the surprise per spike as a function of p̄ (left panels: the
continuous lines indicate the changes in the rank, whereas the dashed curves
denote the absolute values of the surprise per spike). The middle and right
panels show the GC responses to the stimulus as spikegrams and PSTHs, re-
spectively, for three different p̄. The steepest increases and decreases typically
occurred between 0.4–0.6 and 0.3–0.4, respectively. In C, at p̄ = 0.6 and 0.8, note
the spike doublets in response to the second set of input spikes at ∼62 and ∼68
ms before the third set of input spikes at 70 ms. This doublet perturbed the tim-
ing of the following spikes as seen by the wider spread in the PSTH. This spread
is largely responsible for the decline in rank for this stimulus at high p̄. In B,
note the persistent high rank for this stimulus after the rank increase at p̄ = 0.5
(left panel). A doublet to the three-spike bin (second arrow) starts appearing at
p̄ = 0.6 (not shown) and is clear at p̄ = 0.8 with spikes at ∼82 and ∼88 ms in
response to the second set of input spikes (middle and right panels). Hence,
the doublet appearance at p̄ = 0.6 is not the cause of the rank increase at p̄ =
0.5 or of a transmission decrease as for the stimuli in C since its rank remains
high beyond p̄ = 0.6. Thus, when B is compared with A and C, the effect of
the appearance of doublets on surprise per spike is highly stimulus dependent.
For the left panels, the 3876 different stimuli obtained with the same p over the
four synapses ( p̄ = p) were ranked according to the surprise per spike obtained
at a specific p between 0.1 and 0.8. The 10 largest and steepest increases and
decreases in rank were analyzed. In general, it was found that in short notation
(number of spikes per bin with implicit permutation), the largest increases were
for stimuli of the form x2xx or x202 with x = 0, 1; whereas the steepest increases
were for x2xx or x3xx, x = 0, 1, 2; and the largest decreases were for xyy4, x =
1,2,3,4; y = 3,4.
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In this study, the influence of the Golgi cells (GoCs) was omitted to fo-
cus on the GC encoding of its excitatory inputs only. In fact, the series of
analyses presented here did not aim at providing a comprehensive char-
acterization of the information transmission process in the granular layer;
rather, it was meant to set forth an information-theoretic framework suit-
able for studying the efficacy of GC information processing quantitatively.
At this stage, GoC inhibition was not included because a thorough under-
standing of the synaptic transmission at the MF-GoC relay is still missing
(Forti, Cesana, Isope, Dieudonné, & D’Angelo, 2008). In addition, the study
of quantal release properties of GoC-GC synapses has been addressed only
very recently (Mapelli, Rossi, Nieus, & D’Angelo, 2009). Further analyses
will be carried out to quantify the effects of Golgi inhibition onto GC neu-
rotransmission by means of a cerebellar GABA synaptic model accounting
for recent experimental evidence (Mapelli et al., 2009) at this synapse (see
also Bezzi, Nieus, Arleo, D’Angelo, & Coenen, 2004, for preliminary work
in this direction). GoCs fire autorhythmically at 2 to 4 Hz in vitro (Forti,
Cesana, Mapelli, & D’Angelo, 2006) and at around 10 Hz in vivo (Vos,
Wijnants, Taeymans, & de Schutter, 1999), and their discharge frequency
can be raised up to 300 Hz on stimulation. It is worth mentioning that
even under such strong inhibitory conditions, GCs are still able to display
short-burst activity (D’Angelo & De Zeeuw, 2009). Following stimulation
of the whisker pad, GoCs in anesthetized rats follow a stereotyped firing
pattern characterized by bursts of two or three spikes, followed by pauses
of around 100 ms. Moreover, the cerebellum displays oscillatory activity at
theta frequency (Hartmann & Bower, 1998), and a cerebellar network model
suggested that these oscillations are characterized by a highly synchronous
activity of GoCs and GCs (Maex & Schutter, 1998). In all these studies, the
GoCs appear to regulate the narrow time window during which GCs may
fire (D’Angelo & De Zeeuw, 2009; Kistler & De Zeeuw, 2003; Solinas et al.,
2007a, 2007b).

The synaptic model used here was stochastic (see section 4; see also
Sun, Lyons, & Dobrunz, 2005). It presented both facilitation and depres-
sion depending on the release probability p and spike activity (Nieus et al.,
2006; Tsodyks & Markram, 1997). Hence, the calculations of information
presented here extend those that have thus far been investigated using de-
pressing synapse (de la Rocha & Parga, 2005; Goldman, 2004), and constant-
transmission-probability models (Manwani & Koch, 2001; Zador, 1998).
Recently an information-theoretic measure, namely, the synaptic informa-
tion efficacy (SIE) (London et al., 2002), has been introduced to quantify
the transmitting properties of a single synapse. SIE is actually the mutual
information (MI) between the presynaptic input spike trains and the post-
synaptic responses. In the study by London et al. (2002), MI was measured
across only a single synapse, while considering the rest of the dendritic in-
put as background noise. Similarly, other studies using different analytical
approaches have focused on the transmitting properties of single synapses
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(de la Rocha et al., 2002; Goldman, 2004; Manwani et al., 2002; Tiesinga,
2001). In addition, although input correlations have been shown to be rel-
evant to neuronal computation (de la Rocha & Parga, 2005; Schreiber, Fel-
lous, Tiesinga, & Sejnowski, 2004; Tiesinga & Toups, 2005), many studies
have investigated conditions in which they are absent (London et al., 2002;
Manwani & Koch, 2001; Zador, 1998). This study complements these previ-
ous works by presenting a quantitative characterization of how the corre-
lation across multiple synaptic inputs of a neuron may contribute to infor-
mation transmission.

Our results corroborate the hypothesis that the correlation among the in-
puts plays a crucial role in affecting neurotransmission at all levels of release
probability p. Our analysis strengthened this observation by showing how
the spatiotemporal structure of MF inputs affected GC neurotransmission
as a function of p. The most sensitive stimuli to release probability changes
were identified in terms of both surprise and surprise per spike. Short
correlated MF bursts resulted to benefit the most from p increases. Long
correlated stimuli caused changes in neurotransmission and excitation dy-
namics at high p, which bounded their transmission reliability. These results
are consistent with previous findings suggesting that when the synapses are
tuned toward specific input stimuli, one of the roles of LTP and LTD may
be that of generating spike train–specific nonlinear detectors (Natschlager
& Maass, 2001; Sharpee et al., 2006), which would regulate the transmis-
sion of specific spatiotemporal input patterns at the level of the neuron.
The preferential recoding of the information contained in certain patterns
may be of biological relevance for computation at subsequent stages in the
cerebellar cortex. For instance, two spikes in close succession lead to the
opening of presynaptic NMDA channels and start a cascade of events lead-
ing to long-term plasticity at the synapses between the Purkinje cells (PCs)
(Casado, Isope, & Ascher, 2002) and the parallel fibers (PFs), which are the
axons of the GCs. Recoding following granular layer plasticity could also
have the effect of reducing the length of PF spike trains, thereby increasing
the timing accuracy of the PC responses.

Naturally, to provide definite answers beyond the neuronal level, cod-
ing strategies need to be evaluated within a cerebellar network (Coenen,
Arnold, Sejnowski, & Jabri, 2001; Philipona & Coenen, 2004) by means
of large-scale simulations, where plasticity may also regulate the average
GC population firing and the duration of multiple PF activation neces-
sary to elicit a PC response. Therefore, the information-theoretic approach
presented here constitutes a step forward in the investigation of neural in-
formation transfer in the granular layer network of the cerebellum. Scaling
from elementary cellular mechanisms such as synaptic release probabil-
ity to network computation is fundamental to understanding how MF-GC
long-term plasticity, by being instrumental in the control of information
transmission, may regulate the operations to which the cerebellum partici-
pates (Dum, Li, & Strick, 2002).
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4 Materials and Methods

4.1 Biophysical Model of the MF-GC Synaptic Relay. A stochastic
version of our previous models (D’Angelo et al., 2001; Nieus et al., 2006)
was developed for this study (see also Sun et al., 2005). The GC model was
provided with four independent MF-GC synaptic contacts endowed with
stochastic neurotransmitter release mechanisms. Each synaptic contact con-
sisted of three independent releasing sites (RS) (Saviane & Silver, 2006; Sola
et al., 2004), each governed by a three-state presynaptic model (Tsodyks &
Markram, 1997). Neurotransmitter release was modeled as a system of four
first-order differential equations relating the probability of release (p) to the
available (X), released (Y), and recovered (Z) neurotransmitter resources
(Nieus et al., 2006; Tsodyks & Markram, 1997) (see Supplementary Mate-
rial). The release was made probabilistic and modeled as an all-or-none
process by comparing a random number (ε) drawn from a uniform [0, 1]
probability distribution with the released resources Y. Hence, a wave of
glutamate (Nieus et al., 2006) was released from the RS whenever ε was less
than Y, so that averaging over numerous independent Ys led to recovery of
the behavior of the deterministic release model (Nieus et al., 2006; Saviane
& Silver, 2006; Sola et al., 2004). Each RS activated an independent post-
synaptic site endowed with AMPA and NMDA receptors. Because three
RS/contact (Saviane & Silver, 2006) were introduced, each postsynaptic
site was calibrated to contribute one-third of the total conductance (Nieus
et al., 2006). Since no evidence for p heterogeneity was reported (Sola et al.,
2004), p was set at the same value for all releasing sites at the same synapse.
(Further details on the biophysical model can be found in Supplementary
Material, section S1.1.)

First, a series of simulations was run by adopting the same stimulation
protocol used for the patch clamp experiments (see section 2 and Figure 2).
Then the input space was extended by considering the four MF afferents as
four independent spike trains and regulating the neurotransmitter release
probability p at each MF-GC synapse independently (e.g., see Figure 3).
All possible combinations of input spike trains lasting up to 40 ms, as
binary words of 10 ms bins (i.e. with a maximum rate of 100 Hz), were then
created. Thus, each MF spike train was encoded as a four-bit binary word,
and the cell input was a 4 (number of MFs) × 4 (number of bits for each
MF) = 16 bit binary word. Accordingly, the entire input space consisted
of 216 = 65536 stimuli. GC responses were digitalized using temporal bins
of 6 ms over a period of 120 ms (see Supplementary Material, section S2.1,
for a discussion on the dependence of the results upon the bin size used
to sample GC responses). Each stimulus was presented 400 times, and the
effect of limited sampling on MI computation was taken into account (see
Supplementary Material, section S1.3).

To simulate natural firing activity in MFs, all 65,536 stimuli occur-
ring with different probabilities, p(s), were considered. The actual firing
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distribution of MFs is not known, but following Treves, Panzeri, Rolls,
Booth, and Wakeman (1999), a continuous unimodal distribution (with a
single peak close to the spontaneous activity, i.e., close to zero in our case)
with an exponential tail was assumed. This distribution has been observed
in other brain areas, among them, the frontal cortex (Abeles, Vaadia, &
Bergman, 1990), hippocampus and close structures (Barnes, McNaughton,
Mizumori, Leonard, & Lin, 1990), visual cortex (Baddeley et al., 1997;
Franco, Rolls, Aggelopoulos, & Jerez, 2007), as well as used in previous neu-
ral network models (Treves & Rolls, 1991). For this study, a decreasing expo-
nential distribution of firing rate with a mean of 10 Hz was chosen. Another
distribution with similar features (i.e., Poisson) was also tested, and com-
patible results were obtained (see Supplementary Material, section S2.3).

The model was implemented with NEURON 5.4. The most demanding
numerical simulations were run on a cluster of 20 CPUs (1.7 GHz each).

4.2 Electrophysiological Recordings. Whole-cell patch clamp record-
ings of GCs were performed from acute cerebellar slices of P18-P23 Wistar
rats according to published procedures (D’Angelo et al., 1995; Sola et al.,
2004) (see Supplementary Material, section S1.2). Varying the intensity of
MF stimulation permitted generating simultaneous activity in one to four
MFs. The core experiment was carried out in current-clamp mode. MFs
were stimulated by a set of spike trains lasting 40 ms and with a frequency
up to 100 Hz. To investigate the effect of long-term synaptic plasticity on
MI, the same set of stimuli was presented before and after LTP induction
by theta-burst stimulation (TBS: 8 × 100 Hz bursts lasting 100 ms every 250
ms) (Nieus et al., 2006; Sola et al., 2004) (see Supplementary Material, Fig-
ure S2). The mean MF-GC release probability p̄ was estimated in voltage
clamp, at the beginning and at the end of each experiment, by analyz-
ing the excitatory postsynaptic currents (EPSCs) elicited by four stimuli at
100 Hz (Nieus et al., 2006; see Supplementary Material, Figure S3).

GC responses were spike-sorted via a threshold crossing procedure (Igor;
WaveMetrics Inc.). To compute MI, both input (MF) and output (GC) spike
trains were transformed into binary words (see Figure 1). MF spike trains
were digitized by using a temporal bin of 10 ms. Because each stimulus
lasted 40 ms and all MFs received the same spike train, the input set con-
sisted of 24 = 16 stimuli. Each stimulus was presented 25 times. The GC
responses were digitized by using a 6 ms bin width. A 60 ms time window
was used for sampling the GC output; the spikes occurring beyond this
time window (less than 1% of all spikes) were not taken into account to
reduce the dimensionality of the sampling space. The significance of MI
measurements was assessed by a bootstrapping procedure (Lu & Wang,
2004) of 1000 repetitions. MI proved to be statistically significant (p < 0.05)
for MI > 0.4 bits.

All experiments were carried out according to the guidelines and regu-
lations laid down by the institution’s animal welfare committee.
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4.3 Theoretical Analysis

4.3.1 Mutual Information and “Surprise.” The mean information trans-
mitted between the GC responses r and the MF inputs s was calculated
by using Shannon’s mutual information (MI), equation 1.1, where both the
stimuli s and the responses r were represented as either binary words (see
Figure 1) or spike counts. The binary word coding preserves the informa-
tion about spike timing, up to a certain precision, whereas the spike count
coding simply assesses the information transmitted by the neuron average
firing. The data processing inequality (Cover & Thomas, 1991) ensures that
MI obtained using spike counts is always not greater than the MI obtained
using binary words.

To isolate the specific contribution of a single stimulus s to MI, the
stimulus specific surprise (called simply surprise here) was used (Butts &
Goldman, 2006; DeWeese & Meister, 1999):

I1(s) =
∑
r∈R

p(r | s) log2
p(r | s)

p(r )
. (4.1)

The surprise measures how much the conditional distribution p(r | s)
differs from the prior probability distributionp(r ), corresponding to the so-
called Kullback-Leibler distance. The surprise per spike was then computed
by dividing the surprise by the spike count of the input stimulus. Normal-
izing by the number of input spikes essentially removes the linear part of
the contribution of MF firing rates to information transmission.

Both MI and the surprise measure have a systematic bias due to the
limited data samples available (Nemenman, Bialek, & de Ruyter van
Steveninck, 2004; Paninski, 2003; Strong, Koberle, de Ruyter van Steveninck,
& Bialek, 1998; Treves & Panzeri, 1995). This issue is treated in the Supple-
mentary Material, section S1.3.

4.3.2 Correlation Measure. To estimate the number of coincident spikes
across the four MF inputs, the normalized average of the pair-wise cor-
relation over all the different pairs of MFs was computed. Let s ∈ S be a
stimulus constituted by four MF patterns, and let xi and xj denote the input
spike trains representing the activity on the ith and the jth MF, respectively.
The correlation coefficient C(s) was taken as

C(s) = 1
N

· 〈(K (xi ) − x̄) · (K (xj ) − x̄)′〉i> j ,

where x̄ represents the average firing rate, N is the normalization factor
equal to the number of input bins, and K (x) denotes a smoothing function
(i.e., an exponential kernel with τ equal to the input bin width) that takes
into account the effects of the short-time integration over the membrane
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time constant. The C(s) vector, for all s ∈ S, was then rescaled into the range

[0, 1]. For example, C(s) = 0.4039 for s =
⎢⎢⎢⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0

⎥⎥⎥⎦, whereas C(s) = 0.1561

for s =
⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

⎥⎥⎥⎦.
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Supplementary Material 

S1. Supplementary Methods 

S1.1 Biophysical model of the mossy fiber – granule cell (MF – GC) synaptic relay: 

equations and parameter settings 

Cell model 

The GC model was based on the Hodgkin-Huxley formalism according to which the 

membrane potential 

! 

V  (for a single compartment) was computed by solving the ordinary 

differential Eqs.1,3,5: 

! 

dV

dt
= "

1

Cm

gi(V "Vi) + IINJ
i

#
$ 
% 
& 

' 
( 
) 

 (1) 

where 

! 

C
m
 is the membrane capacitance, 

! 

gi  and 

! 

V
i
 are the ionic conductance and reversal 

potential of channel 

! 

i , respectively, and 

! 

I
INJ

 denotes an external driving current. The 

dynamics of each ionic conductance 

! 

gi  was taken equal to: 

! 

gi = g
max

" xi
m
" yi

n  (2) 

with 

! 

g
max

 being the maximum ionic conductance, 

! 

x
i
 and 

! 

yi gating variables (probabilities) 

for activation and inactivation, respectively, and the power values 

! 

m, n  corresponding to 

the number of gating particles in the ionic channel 

! 

i . The kinetics of the gating variables 

! 

x  

and 

! 

y  (with the index 

! 

i  omitted) were defined by: 

! 

dx

dt
=
x" # x

$
x

 

! 

dy

dt
=
y" # y

$ y
 

(3) 
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where the steady state values 

! 

x" ,

! 

y"  and the time constants 

! 

"
x
,

! 

" y for activation and 

inactivation, respectively, were given by: 

 

! 

x" =
#x

(#x + $x )
% x =

1

(#x + $x )

y" =
#y

(#y + $y )
% y =

1

(#y + $y )

 (4) 

with 

! 

"
x
,

! 

"
x
 and 

! 

"y ,

! 

"y  being functions of the membrane potential 

! 

V . All the equations and 

parameter settings characterizing the ionic channels included in the GC model are 

reported on Table S1 (a more detailed description of their biological significance can be 

found in D'Angelo et al., 2001). 

The ionic channel K-Ca is a potassium channel whose activation depends on both 

voltage and inner calcium concentration. Therefore, an auxiliary ODE to describe calcium 

transients was included in the model: 

! 

d[Ca
2+
]

dt
= "

I
Ca

2FAD
" #

Ca
([Ca

2+
]" [Ca2+ ]

0
) (5) 

where 

! 

F  is the Faraday constant, 

! 

D denotes the depth of a shell adjacent to the cell 

surface of area 

! 

A , 

! 

"
Ca

 determines the loss of 

! 

Ca
2+  from the shell, and 

! 

[Ca
2+
]
0
 is the 

resting calcium concentration.  

Synaptic model 

Synaptic currents were described according to the following conductance-based 

approach:  

! 

g j = g
max
0 j  (6) 

where 

! 

j  denotes either AMPA or NMDA conductances, and 

! 

0 j  was obtained from the 

kinetic scheme shown on Figure S1 (A) and the kinetic rates reported in Table S2 (see 

Nieus et al., 2006 for a more detailed description). 
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[Figure S1 about here.] 

A simplified model of pre-synaptic vesicle recycling dynamics was adopted in order to 

reproduce short-time plasticity processes (both depression and facilitation) known to 

occur at MF – GC synapses. The model was governed by the following equations: 

! 

dX

dt
=
Z

"R
# PX$(t # tsp )

dY

dt
= #

Y

" I
+ PX$(t # tsp )

dZ

dt
=
Y

" I
#
Z

"R

dP

dt
= #

P

"F
+ p(1# P)$(t # tsp )

 (7) 

where 

! 

X , 

! 

Y , 

! 

Z  represent the fraction of neurotransmitter vesicles available, released, 

and recycled, respectively, and 

! 

"
R
 and 

! 

"
F
 denote the recovery and the facilitation time 

constants, respectively. Release probability is indicated by 

! 

P, whose initial value is 

! 

p.  

The pre- and post-synaptic dynamics (Eqs. 6,7) are coupled through the following 

equations describing the neurotransmitter concentration 

! 

T : 

2

2

)(4

)(
)(

)(4
))(()][]([

2

B

ttD

r

speff

spDP

KT

T
TS

e
ttDh

M
ttPGLUTGLUTPT speff

+
=

!
+!=+=

!
!

"
#

 (8) 

 

Neurotransmitter concentration 

! 

T  is obtained by summing a brief pulse (

! 

[GLUT ]
P
 of 

duration 0.3 ms and amplitude 1 mM), corresponding to direct release, to a diffusive term 

(

! 

[GLUT]
D

) which accounts for glutamate spilling from distal releasing sites. In Eq. 8 

! 

M  

corresponds to the number of neurotransmitter molecules released, 

! 

r  is the distance from 

which it diffuses, 

! 

Deff  is the diffusion coefficient for glutamate (it also accounts for 

glomerulus tortuosity), h  is the size of the synaptic cleft and 
sp
t corresponds to the time at 
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which the diffusion of neurotransmitter occurs. In the )(TS  equation, the constant 
B
K  

corresponds to the affinity to glutamate. Glutamate concentration, calculated using Eq. 8, 

permits to calculate the AMPA and NMDA open state through the kinetic schemes shown 

in Figure S1A. 

Model plausibility 

The control analysis presented below aimed at assessing to what extent the model 

response variability reflected the variability observed experimentally. We compared the 

PSTHs of real and model GC responses when stimulating the system with the limited MF 

input set (i.e. 16 distinct stimuli, each constituted of four identical spike trains). To do so, 

we selected the longest recording we had (cell A5321), which provided us with 50 trials in 

both CTRL and LTP conditions. A statistical t-test was performed to compare model and 

experimental PSTHs (relative to the same stimulus, a binsize of 6 ms was adopted for the 

MI measurements) under both CTRL and LTP conditions. The test confirmed that almost 

all experimental and model PSTHs did not differ significantly (PVAL>0.1, 14 out of 15 in 

CTRL, 15 out of 15 in LTP). We also computed the cross-correlograms of experimental 

PSTHs against model PSTHs for each stimulus. Then, we measured the absolute 

correlation peak (CMAX) and its time lag CMAX-LAG. For a given stimulus, a good match 

between experimental and model PSTHs would result in high cross-correlation values as 

well as in small values of the time lag. Figure S1B presents the result of this cross-

correlogram analysis. It is shown that the matching between experimental and model 

PSTHs tended to increase after LTP induction, as indicated by the smaller CMAX-LAG 

values. This is in agreement with known effects of LTP induction, which not only 

increases the probability of eliciting GC responses to MF stimulation but also improves 

the time-locking of GC spikes with respect to the stimulus (Nieus et al., 2006). 
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S1.2 Patch-clamp experiments 

In this section we report the fundamental properties of granule cell (GC) patch-clamp 

recordings. Patch-clamp recordings in acute cerebellar slices were performed as 

previously reported (Armano et al., 2000; D'Angelo et al., 1995; D'Angelo et al., 1999). 

Slices were cut in the sagittal plane from the cerebellar vermis of 18-to-23 day-old Wistar 

rats. Recordings were performed at room temperature (19-21 °C). Krebs solution for slice 

cutting and recovery contained (mM): NaCl 120, KCl 2, MgSO4 1.2, NaHCO3 26, KH2PO4 

1.2, CaCl2 2, glucose 11; it was equilibrated with 95% O2 and 5% CO2 (pH 7.4). During 

recordings, the GABA-A receptor blocker, 10 !M bicuculline (Sigma), was added to the 

solution. The patch-clamp pipette solution contained (mM): K-gluconate 126, NaCl 4, 

MgSO4 1, CaCl2 0.05, BAPTA 0.1, glucose 15, ATP-Mg 3, GTP 0.1, HEPES 5. This 

solution maintained resting free [Ca2+] at 100 nM and pH was adjusted to 7.2 with KOH. 

Patch-clamp pipettes filled with this solution had a resistance of 5-8 M! before seal 

formation.  

All electrophysiological recordings were performed with an Axopatch 200-B amplifier 

and signals were sampled with a Labmaster 1200-B interface (sampling rate = 10 kHz). 

Current and voltage traces were digitally filtered at 5 kHz and analyzed off-line with P-

Clamp (Axon Instruments), Igor (Wavemetrics), and NEURON software. Mossy fibers 

were stimulated with a bipolar tungsten electrode via an isolation unit. Most of the 

recordings were carried out in current-clamp, except for 2 sets of tracings taken in 

voltage-clamp at the beginning and the end of the experiment (see below). The number of 

active mossy fibers was determined as explained previously (D'Angelo et al., 1995; Sola 

et al., 2004). 

In current-clamp, the GCs were maintained between –70 mV and –60 mV, and were 

then stimulated to generate synaptic responses. The 16 different stimulus patterns, 
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constructed by setting to either 1 or 0 the values in a 4-digit string, were applied randomly 

every 3 seconds. Since the bins lasted 10 ms, the maximum internal frequency of each 

pattern was 100 Hz. Each series of patterns was repeated 25 times. Each pattern was 

preceded by a current step to monitor intrinsic excitability (see Figure S2A). 

Monoexponential fitting of the voltage responses allowed us to monitor the apparent input 

resistance and the membrane time constant, and hence the input capacitance, Cin="in/Rin 

(Figure S2B). A recording was considered stable if these parameters did not change by 

more than 10% during the experiment (Armano et al., 2000). LTP was induced by 8 

bursts of 10 impulses at 100 Hz, which were repeated every 250 milliseconds (theta-burst 

stimulation, TBS). The efficiency of induction was monitored by verifying that TBS was 

able to elicit action potential bursts (Figure S2C, inset) (Armano et al., 2000). LTP 

appeared as an increase of the probability of spike generation evaluated from the 

response to the first stimulus in each pattern used to calculate MI (Figure S2C). 

[Figure S2 about here.] 

In voltage-clamp recordings at –70 mV, 30 regular spike trains consisting of 4 pulses 

were delivered at 100 Hz every 3 sec. The trains were averaged off-line and fitted 

following the procedure reported in Nieus et al. (2006) (Figure S3), which permitted to 

measure the release probability used to construct the diagram of Figure 2B. The previous 

deterministic version of the model (Nieus et al., 2006) was used for this procedure. In 

voltage-clamp recordings a second assessment of recording stability was performed. The 

cerebellar GC has a compact structure and behaves like a lumped electrotonic 

compartment (D'Angelo et al., 1995; Sola et al., 2004). The analysis of the passive 

current transients induced by 10 mV hyperpolarizing voltage steps from the holding 

potential of -70 mV (low-pass filter = 5 kHz, sampling rate = 100 kHz) yielded an input 

capacitance Cin= 4.64±0.12 pF, a membrane input resistance Rin=1.35±0.16 G! and a 
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series resistance Rs=13.51±1.42 M!. These parameters did not vary significantly during 

the experiments, demonstrating the recording stability. 

[Figure S3 about here.] 

S1.3 Information theoretical analysis 

In the following we describe the methods we used to estimate the mutual information (MI) 

and the surprise between the input and output spike trains. As explained in the main text, 

the most relevant issue consisted of finding a reliable estimator for 

! 

p(r | s) , i.e. the 

conditional probability distribution relating the responses of the cell 

! 

r  to the incoming 

stimuli 

! 

s. Section S1.3.1 introduces the main features of information transmission 

measures. Section S1.3.2 describes the analysis we performed for the estimation of the 

sampling bias (direct method with a second order extrapolation). This procedure, along 

with the high reliability of the granule cell (GC) system, allowed us to evaluate mutual 

information and surprise with a limited number of trials. 

S1.3.1  Mutual information and surprise 

Shannon mutual information (MI) (Cover and Thomas, 1991; Shannon, 1948; Shannon 

and Weaver, 1949) provides a measure of how much information is contained in the 

neural spike patterns. In practice, in either an experiment or a simulation, we chose a set 

of stimuli 

! 

S , and we recorded the elicited neural responses Rr!  when one stimulus 

! 

s" S was repeatedly presented with a known prior probability 

! 

p(s) . For example 

! 

r  can be 

defined as the number of spikes recorded within a fixed time window after the stimulus 

presentation, or the interspike intervals, or a binary word representation of the spike train. 

Once we had collected all the data, we could estimate the corresponding joint probability, 
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! 

p(r,s), and the probability distribution of the responses averaged over the stimuli, 

! 

p(r). 

Then, we could compute the mutual information according to: 

! 

MI(R;S) = p(r,s)log2
p(r,s)

p(r)p(s)
r"R

#
s"S

#  (9) 

Mutual information summarizes how much we can tell about the stimuli by looking at 

the neural responses (or vice-versa). For example, in the trivial case in which stimulus 

and response are completely uncorrelated, we have 

! 

p(r,s) = p(r) p(s) and 

! 

MI(R;S) = 0. 

Eq. 9 may be rewritten in terms of conditional probability using Bayes rule 

(

! 

p(r | s) = p(r,s) / p(s)): 

! 

MI(R;S) = p(s) p(r | s)log2
p(r | s)

p(r)
r"R

#
s"S

#  (10) 

or, introducing the entropy 

! 

H(R) = " p(r)log2 p(r)
r#R

$  of the response probability distribution, 

we may rewrite Eq. 10 as: 

! 

MI(R;S) = H(R) "H(R | S)  (11) 

where !
"

=
Ss

sRHspSRH )|()()|(  is the conditional entropy. This measure quantifies the 

average variability of the responses given a stimulus. If there is a deterministic mapping 

from stimuli to responses, then the conditional entropy is zero, and mutual information is 

maximal and coincides with the entropy of the responses. 

In many cases it may be interesting to assess stimulus specific contribution to 

information transfer (Machens et al., 2005). To this extent we used the stimulus specific 

surprise (I1), which is defined as:  
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!=
r rp

srp
srpsI

)(

)|(
log)|()( 21  (12) 

This measure tells us how much the conditional probability distribution 

! 

p(r | s)  differs from 

an a priori distribution 

! 

p(r), hence the term “surprise”. Other definitions of event specific 

neural coding have been proposed (Bezzi et al., 2002; Butts, 2003; DeWeese and 

Meister, 1999). There are various advantages in choosing the stimulus specific surprise. 

First, it is a simple definition that can be immediately inferred from the mutual information 

definition (Eq. 10) by simply taking the stimulus-dependent term of the sum. Second, it 

has been shown (DeWeese and Meister, 1999) that it is the only possible definition that 

always assumes non-negative values. Third, in the limit of very unlikely stimuli (i.e. 

! 

p(s) <<1 for each stimulus 

! 

s, as in the present study), it may be interpreted as the mutual 

information between the response set and a stimulus set composed by two clusters: one 

constituted by a single stimulus 

! 

s and the other by all the rest of the stimuli (Bezzi et al., 

2002). 

The main issue when calculating information quantities is to estimate the conditional 

probabilities 

! 

p(r | s) . Because the stimulus and especially the response space are in 

general of high dimensions, this procedure needs a very large amount of samples, rarely 

available in neurophysiological experiments or even in simulations. Different techniques 

have been proposed to overcome this problem and they are discussed in the next 

section.  
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S1.3.2  Estimation of the mutual information between spike trains 

Estimating information from empirical distributions is a hard task. The main difficulty is to 

derive a reliable estimator for 

! 

p(r | s) , given that 

! 

p(s)  is assumed a priori, and 

! 

p(r) can be 

calculated from the conditional probability according to !
"

=
Ss

srpsprp )|()()( . 

The naïve procedure consists of replacing 

! 

p(r | s)  by the frequency of occurrence of 

the corresponding response for each stimulus (direct method). This corresponds to the 

maximum likelihood estimator, but it faces the problem of the huge number of samples 

needed due the high dimensionality of the input and output spike train representations. To 

preserve the temporal information encoded in the spike train, we must keep track of the 

times of occurrence of the spiking events with a certain degree of accuracy. For example, 

by choosing a temporal resolution of 6 ms (as in the main text) we could represent spike 

trains without any loss of information up to 160 Hz; by considering a 100 ms time window, 

this would result in 216 possible different output sequences. Thus, a robust estimation of 

mutual information using the direct method would require a number of sample N >> 216 for 

each stimulus. Therefore, in the presence of a large stimulus set, as in our simulation 

(65536 stimuli, e.g. see Figure 3 in the main text) the number of trials needed would be 

larger than a few billions. 

Although the application of the direct method appears to be unrealistic due to these 

computational issues, there are two important features of the GC system that make this 

approach suitable for our specific case.  

First of all, the degree of stochasticity of our system is low, that is the behavior of the 

GC is almost deterministic. This could be assessed quantitatively calculating the 

conditional (noise) entropy for any stimulus. In a typical simulation (65536 stimuli, 400 

trials), the average conditional entropy contribution 

! 

H(R | S)  was 1.56 bits. By increasing 

the number of trials up to 50 000, we obtained a similar value: 1.59 bits. The maximal 
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conditional entropy over the whole stimulus set was 7.1 bits. These values were much 

lower than the maximal entropy corresponding to a uniform distribution (16 bits). In other 

words, the conditional probability distribution 

! 

p(r | s)  was concentrated around few 

significant, and well represented, responses. Accordingly, sampling this typical set gave a 

good approximation of the entropy of the distribution. Brautbar and Samorodnitsky (2005) 

introduced a parameter of a distribution called effective alphabet size qeff, which is a 

function of the entropy of the distribution. They showed that a consistent maximum 

likelihood estimator converges to the entropy of the distribution asymptotically for N>> 

qeff,. In our case, qeff = 54 for 

! 

p(r) and the average qeff for the conditional probability 

distributions 

! 

p(r | s)  was 104 symbols with a maximum at 216 symbols. 

Secondly, by examining the behavior of mutual information as a function of the 

sampling size we found a smooth (decreasing) curve that could be extrapolated to the 

infinite data limit (see details below).  

When applying the direct method, we introduce a systematic negative bias in the 

entropy estimation and a positive bias in the mutual information (Nemenman et al., 2004; 

Paninski, 2003; Strong et al., 1998; Treves and Panzeri, 1995). This bias can be 

evaluated analytically in some special cases (Treves and Panzeri, 1995), otherwise it has 

to be computed numerically. Following Strong et al. (1998) to evaluate this correction, we 

performed the analysis using only a fraction of the trials, then we plotted the information 

values over the inverse data fraction (1/N, where N is the number of trials), and finally we 

extrapolated the values to the infinite data set limit, as 1/N goes to zero, with a second 

order extrapolation method. All the simulations described in the main text were done with 

400 trials, and the infinite size limit values for the mutual information were obtained by 

extrapolation using the N=100-, 200-, 300- and 400-trial values.  
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To estimate the error, we performed the same analysis using a larger dataset 

(N=50000 trials), and compared with the extrapolated values of the mutual information 

and the surprise obtained with the different sampling sizes. Figure S4 compares the MI 

estimate (for a release probability p=0.5) computed by extrapolating from a subset of 

samples (N=100, 200, 300 and 400 trials) to the infinite limit number of trials, with the MI 

numerical results obtained with N=50000 trials (black arrow). The left (A) and right (B) 

panels refer to MI calculation using spike counts and binary words, respectively. The 

estimated errors (the difference between the second order extrapolation and the 

numerical value obtained with 50000 trial simulations) were only 0.3% for spike counts 

and 1% for binary words. The extra data points computed for this particular case (p=0.5) 

for N between 400 and 50000 shown in the figure are all near the extrapolated line. 

Together, these results show that the bias estimation by extrapolating from the subset of 

samples (N=100, 200, 300 and 400 trials) was effective.  

Applying the same method to estimate the error in the surprise computation, we found 

an average error of 10% for spike count and 10% for binary word. 

[Figure S4 about here.] 

S1.3.3  Conclusions 

The main problem of measuring information transmission with spiking neurons is to 

estimate the conditional probability density of binary words from a limited set of trials. We 

replaced these distributions with the corresponding frequency histograms obtained by 

numerical simulations, and we estimated the limited sampling bias by means of a second 

order extrapolation. This procedure, together with the low stochasticity that characterizes 

GC processing, allowed us to successfully evaluate the mutual information and the 

surprise by using a limited number of trials. 
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S2 Supplementary Results 

S2.1 Dependence of the results upon the temporal bin-size used to sample 

granule cell responses 

The 6 ms bin-size used to sample granule cell (GC) responses was empirically set to 

characterize the output state space without discarding any relevant spike-timing 

information. The control analysis reported here was performed to assess to what extent 

our findings might be influenced by the binning procedure. 

First, we quantified the fraction of omitted spikes (FOS), i.e. the fraction of action 

potentials disregarded during the information theoretic measurements due the 6 ms bin-

width (multiple action potentials might eventually occur within the same temporal bin). 

Figure S5 displays the outcome of this analysis. We computed 

! 

FOS  by averaging over 

all the different release probabilities 

! 

p  (range [0.1-0.8], with 

! 

p varying independently 

across the four mossy fibers, MFs), and over all 65536 x 400 stimulus presentations 

(65536 stimuli each presented 400 times). We found that 

! 

FOS =2.34 spikes per 

thousand were omitted (std=2 spikes per thousand). The maximum fraction of lost spikes 

! 

FOS
max

 was equal, on average, to 6.47 spikes per thousand and it occurred (as expected) 

in the presence of the largest release probability (i.e., 

! 

p =0.8) on the four MFs. This 

control analysis suggested that a bin-width of 6 ms permitted to recover the majority of the 

information transmitted by the GC. 

[Figure S5 about here.] 

To further investigate this issue we focused on the results reported on Figure 8, which 

aimed at identifying the stimulus features that produced the largest and the sharpest 

changes of surprise-per-spike following release probability increases. A new series of 
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analyses was carried out to assess whether or not the findings of Figure 8 were likely to 

depend on the width of temporal bin. Figures S6-S8 compare the results obtained with a 

bin-width of 3 ms against those obtained with a bin-width of 6 ms. This qualitative analysis 

suggested that reducing (by a factor of 2) the bin-size does not effect our results about 

the type of stimuli that benefited the most (i.e., short correlated stimuli) or the least (i.e., 

long correlated stimuli) from release probability increases. In order to provide a more 

quantitative assessment, we compared the correlation coefficient C (see Materials and 

Methods) of the stimuli providing the largest increases and decreases of surprise-per-

spike with increasing releasing probability in the case of 6 and 3 ms bin-sizes. The 

diagram of Figure S9 shows a good consistency between the findings under the two 

conditions.  

[Figure S6 about here.] 

[Figure S7 about here.] 

[Figure S8 about here.] 

[Figure S9 about here.] 

S2.2 Relative role of AMPA receptor desensitization vs pre-synaptic vesicle 

turnover in determining the transmission properties of granule cells before 

and after LTP induction 

Short-term plasticity (STP) at mossy fiber – granule cell (MF – GC) synapses is likely to 

be mediated by both post-synaptic AMPA receptor desensitization (Saviane and Silver, 

2006) and pre-synaptic vesicle dynamics (Nieus et al., 2006). In order to ascertain the 

relative role of AMPA desensitization vs vesicle turnover, a series of numerical 

simulations was run in which the recovery time constant ("R) and the AMPA 

desensitization (DES) process were modified in turn. Interestingly, setting either "R or 

DES to zero did not cause any significant differences in GC spike timing, because action 
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potentials tended to fell within the same time bins with respect to the CTRL situation 

(Figure S10; notice that in order to elucidate the effect of setting either "R or DES to zero, 

the strongest stimulus, i.e. four pulses at 100Hz on the four MFs, was taken). As a 

consequence, no significant MI differences were revealed in either testing conditions.  

[Figure S10 about here.] 

S2.3 Dependence of the results upon the probability distribution underlying MF 

activity patterns  

As mentioned in the Material and Methods section, the actual distribution underlying MF 

firing activity under natural conditions remains unknown. It has been shown that GCs do 

not fire spontaneously but they rather require the co-activation of 3 to 4 MFs to elicit a 

spike (D'Angelo et al., 1995, Nieus et al., 2006). It has also known, since the 80’s (Kase 

et al., 1980), that MFs discharge high-frequency bursts (>100Hz) during eyelid 

conditioning experiments. Recent in vivo studies have confirmed that such high-frequency 

bursts (average ISI 12.1ms, Rancz et al., 2007) are also generated in response to 

mechanical stimulation of rat’s whiskers (Rancz et al., 2007). In both the aforementioned 

experimental investigations the high frequency bursts are a footprint of sensorial input 

reaching the cerebellum. At rest, when no specific sensorial input reaches the cerebellum, 

the MF background activity is almost quiescent (3.9 Hz, Rancz et al., 2007). These 

findings point towards the hypothesis of a non-uniform distribution P(s) describing MF 

activity patterns and suggest that a low probability is likely to be associated with high 

frequency inputs. Similar to the theoretical approach put forth by Treves et al. (1999), we 

assumed that the probability distribution P(s) associated to MF inputs would follow a 

general trend: to be continuous, unimodal (with a single peak close to the spontaneous 

activity, i.e. close to zero in our case), and with an exponential tail.  
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The findings presented in the main part of the paper were obtained by assigning to 

each MF input train s a P(s) drawn from a decreasing exponential distribution with a mean 

firing rate of 10Hz. Here we present the results of a complementary series of simulations 

aimed at testing the effect of using a different probability distribution, namely a Poisson 

distribution P(s) with a mean firing rate of 10Hz. Figures S11-S14 show that the findings 

obtained with the Poissonian P(s) are consistent with those obtained with the exponential 

P(s).  

[Figure S11 about here.] 

[Figure S12 about here.] 

[Figure S13 about here.] 

[Figure S14 about here.] 

S2.4  Contribution of subsets of stimuli to information transmission 

When focusing on MI, one may predict a monotonic-like relationship between the synaptic 

efficacy of MF – GC projections and the average amount of information transmitted by the 

GC. Indeed, LTP is known to increase not only the post-synaptic firing but also the time 

locking of the output spikes relative to the afferent signals. On the other hand, when 

looking at more stimulus-specific measures (such as the surprise) the way LTP shapes 

neuronal information transmission becomes less predictable. Thus, questions like “how 

does the LTP-dependent shaping process account for the spatio-temporal structure of 

specific stimuli?” can be asked. Figure 4 helped us to begin answering this question and 

suggested that only the surprise of the least informative stimuli (i.e., those having a 

surprise value smaller than 5% of the maximum surprise) showed a linear relationship 

with the release probability . By contrast, optimal information transmission for most 

inputs occurred already at intermediate values of release probability. Figure S15A is an 

extended version of Figure 4: it shows the relationship between the surprise values and 
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 for all the subsets of stimuli considered for this analysis. Data points were obtained by 

averaging the surprise over distinct subsets of stimuli, from the most informative ones 

(i.e., those with surprise larger than 90% of the maximum) to the least informative ones 

(i.e., those having a surprise less than 5% of the maximum). Note that the size of the 

input subsets used to calculate the mean surprise values varied across data points.  

 We quantified the contribution of each mean surprise data point to the overall MI. 

That is, let 

! 

S
i
 be the subset of stimuli considered to generate a given data point 

! 

i  of 

Figure S15A. We computed !
"

#=
iSs

i sRIspSRMI );()();( 1 , where 

! 

p(s)  denotes the prior 

probability of a stimulus 

! 

s (drawn from an exponential distribution of firing rates, see 

Material and Methods as well as Supporting Information), and );(1 sRI  is the surprise 

associated to stimulus 

! 

s. Figure S15B displays how the 

! 

MI(R;S
i
) contributions are 

distributed over the sampled data points. It is shown that the contribution of least 

informative stimuli becomes significantly dominant as the release probability increases, 

which is consistent with the findings of Figure 3B suggesting a monotonic behavior of MI 

following LTP (for a given release probability, mutual information is given by 

! 

MI(R;S) = MI(R;S
i
)

i

" ).  

[Figure S15 about here.] 

[Figure S16 about here.] 

[Figure S17 about here.] 

S2.5  Considerations concerning the transmission of specific input examples 

S2.5.1  Output firing rate and information transmission 

The output firing frequency constitutes a relevant facet of the manifold transmission 

process occurring at the MF-GC synaptic relay. Indeed, it is shown (main body, Sec. 2.1) 
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that the GC firing rate conveyed about 50% of the overall amount of information 

transmitted. Yet, the rest of the paper focuses on the contribution to information transfer 

of the spatiotemporal structure of the input-output patterns. Indeed, the spike count alone 

cannot be employed to understand the results provided by the MI, Surprise, and Surprise-

per-spike measures, which are based on the binary-string decoding scheme. For 

example, at release probability 

! 

p = 0.8 , the GC responses to the stimuli 

! 

s
1

=

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 

and 

! 

s
2

=

1 0 0 0

0 0 1 0

0 0 1 0

0 0 0 1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 are characterized by equivalent mean firing rates and standard 

deviations (Figure S18A). By contrast, the surprise and surprise-per-spike measures 

(Figures S18B,C) capture the significant information-wise difference between the two 

stimuli, which reflects the different spatiotemporal characteristics of the input and output 

patterns displayed on Figures S18D,E.  

[Figure S18 about here.] 

S2.5.2  Transmission of stimuli having spikes in adjacent vs. non-adjacent time bins 

Let us consider the two following stimuli: 

! 

s
1

=

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

, with 

! 

C(s
1
) = 0.4039, and 

! 

s
2

=

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

, with 

! 

C(s
2
) = 0.3048 .  

Figure S19 displays the spike count of the GC response to 

! 

s
1
 and 

! 

s
2
 as a function of the 

mean release probability 

! 

p . It is shown that, on average, the two stimuli elicit a different 

number of spikes at low (e.g. 

! 

p = 0.3) and high (e.g. 

! 

p = 0.8 ) release probabilities. This 
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GC behaviour is likely to depend, among other factors, on short-term synaptic facilitation 

and depression mechanisms. Figure S20 presents an information-wise comparison of the 

encoding of the two stimuli at different 

! 

p . A coherent picture is provided by the surprise 

and surprise-per-spike measures –see A-B for absolute values, see C-D for rankings. The 

transmission of 

! 

s
1
 benefits more rapidly from 

! 

p  increases, whereas 

! 

s
2
 is better 

transmitted at high release probabilities (

! 

p > 0.6 ). Finally, Figure S20E displays the shape 

of the distribution of the GC response patterns at 

! 

p = 0.3 and 

! 

p = 0.8 . The PSTHs at low 

! 

p  show that the response distribution to 

! 

s
1
 is sharper –and better time locked– than the 

response to 

! 

s
2
. At high 

! 

p  the occurrence of doublets creates interferences in the GC 

response to the second spike of 

! 

s
1
 –which spreads the response probability distribution 

and results in the decrease or saturation of information transmission. By contrast, the 

occurrence of doublets does not create any interference with the subsequent spike 

production in the case of 

! 

s
2
 and the surprise and surprise-per-spike values continue to 

grow at high 

! 

p . 

[Figure S19 about here.] 

[Figure S20 about here.] 

Other two examples of transmission of specific stimuli having spikes in adjacent input 

bins are considered in Figure S21. First, the surprise-per-spike and its ranking (Figure 

S21 A and B, respectively) are measured over 

! 

p  for the three following stimuli:  

! 

s
1

=

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

, 

! 

s
2

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

, and 

! 

s
3

=

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

. As expected according to 

our previous findings, the short-and-correlated stimulus 

! 

s
1
 is the best transmitted, 

compared to 

! 

s
2
 and 

! 

s
3
, as the release probability increases. By contrast, the stimulus 

! 

s
3
, 

which is likely to induce monosynaptic temporal summation and short-term 
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facilitation/depression mechanisms, benefits the least from 

! 

p  increases. Figures S21B-C 

compare the surprise-per-spike and its ranking, respectively, of the following stimuli:  

! 

s
1

=

1 0 0 0

1 0 0 0
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. Consistent with the results of the 

previous example, the stimulus 

! 

s
3
 is the one which gains the least, in terms of information 

transmitted, as the release probability augments.  

In the last two examples, the stimulus 

! 

s
1
 was compared first to inputs with the same 

number of spikes but lower correlation, and then to stimuli with larger spike counts and 

higher correlation. The results of these comparisons (Figure S21) suggest that the stimuli 

that benefit the most, in terms of surprise, from release probability increases are the ones 

that set the best compromise between correlation and spike count, which is consistent 

with the general finding in the main body concerning the relevance of short correlated 

stimuli. 

[Figure S21 about here.] 

S2.5.3  Discussion 

Correlation and surprise/spike measure  

Figures 5 & 6 present important information regarding the relationships between input 

correlation and cell response. The surprise-per-spike and its ranking provides a color-

coded classification scheme, which illustrates the archetype of the “structure” of the 

stimuli falling in a category. It indicates also how it relates to the correlation of the stimuli. 

It is clear from Figure 6C that correlation is only part of the story. Indeed, for the same 

correlation C= 0.2, one can find almost all categories of stimuli since almost all colors are 
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represented along this value. The surprise-per-spike differentiates between them along 

another dimension.  

Intuitive presentation of surprise measures 

The surprise describes whether the response associated with a particular stimulus was 

expected or not when compared to our prior knowledge, hence the surprise terminology. 

Since probabilities are used, the results for one stimulus are always in relation to all other 

stimuli. Once normalized, the PSTHs presented in some of the figures are a good 

approximation to the probability distribution of the response given the stimulus, 

! 

p(r | s) . A 

high reliable response is one that has high and sharp peak(s) in its probability distribution 

or PSTH: the response spikes occur at about the same time for every stimulus 

presentation. A low reliable response is one that has low and wide probability distribution 

peak(s): the timing of the response spikes varies significantly across presentations of the 

same stimulus. 

As other neurons, the granule cell is more likely to fire after spike summation in time. 

Nevertheless, the analysis indicates that a response spike can also occur whenever there 

are 3 or 4 input spikes in the same time bin (correlated spikes) with no summation 

required. Intuitive analysis of spike responses can be understood as the approximation of 

two principal cases. As release probability 

! 

p  increases, when there is only one spike in 

the input or when the spikes are far apart, the output spike(s) occur(s) earlier and the 

response probability distribution increases and remains sharp, since there is no or 

minimal interference between output spikes. There is a monotonic increase in information 

transmission as 

! 

p  increases. With multiple input spikes close to one another, there may 

be interference in spike production. The interference can be the result of the dynamics of 

the cell, such as when doublets occur, the refractory period, etc. As 

! 

p  increases, the 

response probability distribution spreads and its peak decreases in amplitude. This results 
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in a decrease or saturation of information transmission at large 

! 

p . Most spike responses 

can be understood in terms of particular combinations of the two basic cases above, 

which we will refer to as case #1 and #2.   

In the following, we examine closely three examples of spike priming. The first is given 

in Figure 8A. Neither of the two sets of correlated spikes alone produces a spike response 

at low probability of release 

! 

p  (see spikegram for 

! 

p = 0.2 ). As 

! 

p  increases beyond 0.4, 

the ranking increases as the responses become more and more “unexpected” (or 

surprising). Two coincident spikes are rarely enough to fire the cell.  Here, the first set of 

two spikes prime the cell so that the next set can make it fire reliably at 

! 

p = 0.4 . Notice 

that there are some responses to the first set of two spikes at 

! 

p = 0.4 , but these are not 

reliable as their PSTH is very low and wide. The reliability of the response is not high 

relative to other stimuli, that is why the surprise-per-spike ranking is still very low. As 

! 

p  

increase above 0.4, the overall reliability of the cell response increases (i.e. the reliability 

of the responses to both sets of spikes) and the response becomes more and more 

unexpected. The timing is about just right. The first set of two spikes at high 

! 

p  leads to 

case #1 above: the response does not suffer from interference. Moreover, the distance 

between the next set of spikes (2 time bins) is about just right to minimize interference 

from the 1st spike production. This suggests that this 2nd set of spikes also acts like a case 

#1 above. Nevertheless, one can see in the PSTH at 

! 

p = 0.7  that the response to the 2nd 

set of spikes starts to spread after the high peak. Since this tail was not present at lower 

! 

p , this suggests a starting interference from the previous response spike, which becomes 

stronger as 

! 

p  increases (see the difference in peak between 

! 

p = 0.4  and 

! 

p = 0.7 ). This 

interference is nonetheless not sufficient to modify the high ranking in the surprise-per-

spike for this stimulus (left diagram).  
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In conclusion, this is an example where priming of spikes occurs to permit appearance 

of later spikes at low 

! 

p . At high 

! 

p , the two sets of spikes are well separated in time to 

permit both to act like a first set of spikes and do not produce much interference. This 

means that the overall response of the cell can remain reliable at high 

! 

p  with two sharp 

peaks. This is the reason of the highest change in rank of surprise-per-spike: practically 

no response at low 

! 

p , and very high and reliable response at high 

! 

p .   

 The second example of priming is provided in Figure 8C. The spikegram and PSTH at 

! 

p = 0.8  indicate that the sharpest peak occurs for the 2nd set of spikes, not the first. This is 

because there are only 2 input spikes in the first set. They do not elicit a strong response 

and do not produce interference with the 2nd set of spikes. Consequently, the 2nd set of 

spikes, with 4 correlated spikes, retains a highly reliable response at high 

! 

p  even if they 

produce doublets. This is not the case for the following spikes: they suffer from the 

previous presence of doublets and their response is not reliable, similarly for the 4th set of 

spikes. The overall ranking of this stimulus drops dramatically as a result (left diagram).  

The 3rd and last example is given in Figure 8B. It shows another example of a 2nd set 

of spikes that behaves like case #1 above (first spikes). Here, even at high 

! 

p , the lonely 

spike does not produce much of a response, yet it primes the response to the 2nd set of 

spikes. The change in rank can occur very quickly: the response to the 2nd set of spikes 

both appears suddenly and the peak is high and sharp (very reliable response). Since 

there are no following spikes, the doublet does not produce any interference and the 

surprise-per-spike ranking remains high.  

Figure 8 presents the key characteristics of the stimuli that responded to the criterion 

selected: highest jump, sharpest jump, and lowest jump. The analysis by surprise and 

surprise-per-spike permitted to uncover the descriptions above, it also provided a 

categorization of the stimuli in ways that were unexpected at first. A posteriori, it is 
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relatively easy to make sense of it all. Nevertheless, the direction in reverse is less than 

obvious (predicting which stimuli would fulfill the criterion). Let’s recall that our interest 

was to uncover how information transmission changed as release probability changed, 

which goes beyond just doing a detailed analysis of when the cell responds. 
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Figure Legends  

Figure S1. Synaptic model of the mossy fiber – granule cell projection.  

(A) AMPA & NMDA kinetic schemes. S(T) is a Michaelsen Menten function (see text), D 

and C are deactivated and closed states, respectively. (B) Consistency between model 

and experimental PSTHs before and after LTP induction. The cross-correlation 

(measured here by the CMAX-LAG values, see text) between experimental and model 

PSTHs tended to be larger after LTP induction (red data) than in CTRL conditions (blue 

data). 

Figure S2. LTP Induction at the Mossy Fiber – Granule Cell Synapses. Experimental 

results. 

(A) Each EPSP was preceded by a -2 pA current step lasting about 150 ms. Note that, 

after theta-burst stimulation (TBS), the EPSP increased while the control step did not 

change. (B) Plots of Rin and Cin values obtained from monoexponential fitting of the 

passive voltage response. Notice that Rin and Cin were stable and did not change after 

TBS (arrow). (C) The time-course of LTP for the same cell shown in A-B. The probability 

of spike firing during low-frequency synaptic transmission was enhanced following TBS – 

in this example, a decaying PTP/STP (post-tetanic potentiation / short-term potentiation) 

phase is observed before full LTP develops. The inset shows the GC response to TBS, 

revealing strong action potential discharge (Armano et al., 2000). Two of these protocols 

(x 2) were delivered in close sequence to induce LTP. 

Figure S3. Fitting of EPSC trains.  

EPSC trains of 4 pulses at 100 Hz were elicited in voltage-clamp at the beginning and at 

the end of recordings. The traces are averaging of 30 sweeps and were fitted with the 

model reported previously (Nieus et al., 2006). Fittings permitted to estimate the 
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neurotransmission parameters and, in particular, release probability. In the example 

reported in this figure, release probability changed from 0.58 to 0.81, while the other 

parameters (including the effective glutamate diffusion constant, the time constants for 

synaptic facilitation and vesicle recovery, and glomerular geometry) were held constant to 

their control values. 

Figure S4. Finite sampling bias.  

Mutual information computed using spike counts (A) and binary words (B) is displayed as 

a function of the sampling size. The sampling size is shown as the inverse fraction of data 

used, 1/N, where N is the number of samples. The mutual information (diamonds) was 

computed by using 65536 different stimuli, each of which presented up to 50000 times 

(trials), with a probability of release p=0.5. The dotted line is a second order fit obtained 

from the 4 rightmost points, N = 100, 200, 300, 400 trials (as described in the main text). 

The infinite data sampling extrapolation limit, as 1/N goes to zero, has values 0.416 (spike 

count) and 0.84 bits (binary word). The measured values using 50000 trials (black arrows) 

were close to the infinite data values: 0.415 (spike count) and 0.832 bits (binary word).  

Figure S5. Mean number of GC spikes per thousand omitted from the analysis due to the 

6 ms bin-width. Simulation results. 

The number of omitted spikes per thousand was measured as a function of the mean 

release probability 

! 

p  (range [0.1-0.8], with 

! 

p varying independently across the four 

mossy fiber synaptic terminals). Each data point was computed by averaging over the 

entire set of 65536 x 400 stimulus presentations (i.e., 65536 stimuli with 400 trials per 

stimulus).  

Figure S6. Largest surprise-per-spike increases following release probability increases. 

Comparison between results obtained with 6 and 3 ms bin-width. Simulation results.  
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The 10 largest increases (in rank) of surprise-per-spike following 

! 

p  increases when 

employing a bin-size equal to 6 ms (A) and 3 ms (B).  

Figure S7. Sharpest surprise-per-spike increases following release probability 

increases. Comparison between results obtained with 6 and 3 ms bin-width. Simulation 

results. 

The 10 sharpest increases (in rank) of surprise-per-spike following 

! 

p  increases when 

taking a bin-size equal to 6 ms (A) and 3 ms (B).  

Figure S8. Largest surprise-per-spike decreases following release probability increases. 

Comparison between results obtained with 6 and 3 ms bin-width. Simulation results. 

The 10 largest decreases (in rank) of surprise-per-spike following 

! 

p  increases when 

taking a bin-size equal to 6 ms (A) and 3 ms (B).  

Figure S9. Largest surprise-per-spike changes following release probability increases. 

Comparison between results obtained with 6 and 3 ms bin-width. Simulation results. 

Correlation coefficient of the stimuli that provided the largest increases (red data) and the 

largest decreases (blue data) of surprise-per-spike following LTP.  

Figure S10. Effect of manipulating the AMPA receptor desentization process and the pre-

synaptic vesicle dynamics on GC spike timing. Simulation results. 

A) Spike time delays were measured by computing tCTRL-tTEST, being negative when the 

test condition caused an advance of the output action potential. B) Effect of setting either 

the recovery time constant ("R) or the AMPA desentization (DES) to zero under two 

probability release conditions (p=0.4 and p=0.6). In terms of spike timing, the effect of 

both manipulations was negligible (given the 6 ms bin-size used to sample GC 

responses).  
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Figure S11. Release probability increases enhance mutual information in GCs. 

Simulation results. 

No significant difference was revealed when comparing the case of exponential (blue 

curve) vs Poisson (red curve) probability distribution underlying MF firing activity. 

Figure S12. Surprise changes following release probability increases. Simulation results. 

Comparing the case of exponential (A) vs Poissonian (B) probability distribution of the MF 

activity suggested a coherent effect of release probability increases upon the surprise 

values.  

Figure S13. Surprise changes as a function of both release probability and correlation 

across the four MF inputs. Simulation results. 

The comparison between the results obtained with an exponential (A) vs a Poisson (B) 

probability distribution of the MF firing rate suggested a consistent behavior under both 

assumptions. Similar to Figure 6, a color code was employed to characterize the number 

of bins occupied (blue, green, pink, red for 4, 3, 2, 1 bins, respectively). Within the same 

color (e.g., red), the number of spikes/bin modulated the color nuances (e.g. red to 

orange for 4 to 1 spikes/bin). 

Figure S14. Changes in surprise-per-spike as a function of both release probability and 

correlation across the four MF inputs. Simulation results.  

The results obtained by assuming an exponential (A) and a Poisson (B) probability 

distribution of the MF firing rate are consistent with each other. The color map is the same 

than the one used for Figure 6 and S13. 
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Figure S15.  Contribution of subsets of stimuli to information transmission. Simulation 

results. 

Average surprise of stimulus subsets as a function of mean neurotransmitter release 

probability 

! 

p .  (A) For each mean release probability, data points were obtained by 

averaging the surprise over subsets of stimuli, from those with surprise larger than 90% of 

the maximum to those having a surprise less than 5% of the maximum. Optimal 

information transmission of most inputs occurred already at intermediate values of release 

probability. Only the mean surprise of stimuli with a surprise less than 5% of the maximum 

was monotonously increasing with 

! 

p  (see bottom-right diagram). (B) Distribution of the 

contributions to the overall MI over the sampled data points. The stimuli with lowest 

surprise become dominant following release probability increases.  

Figure S16. Largest increases (A) and decreases (B) of surprise ranking following 

release probability increases. Simulation results. 

Figure S17. Characterization in terms of spike count of the stimuli that provided the 

largest increases (red data) and the largest decreases (blue data) of surprise following 

LTP. Simulation results.  

Figure S18. Example showing that the output spike count alone cannot explain the 

results about most informative stimuli. Simulation results. 

At release probability 

! 

p = 0.8 , the two MF stimuli 

! 

s
1
 and 

! 

s
2
 elicit, on average, the same 

number of GC spikes although their surprise and surprise-per-spike computed based on 

the binary string decoding scheme are significantly different. The two stimuli have 

correlation coefficients equal to 

! 

C(s1) = 0.2548 and 

! 

C(s1) = 0.0647, respectively.  
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Figure S19. Example showing the output spike count as a function of release probability 

for two specific stimuli. Simulation results. 

Figure S20. Surprise and surprise-per-spike as a function of release probability for the 

same stimuli used in the example of Figure S19. Simulation results.  

Figure S21. Two examples of information-wise comparison for specific stimuli having 

spikes in adjacent input bins. Simulation results.  

Table S1. Equations and parameter settings determining the dynamics of the ionic 

channels of the granule cell (GC) model.  

Table S2. Kinetic rates of AMPA and NMDA postsynaptic receptors of the model. 

Dimension units are ms-1, except for the star-labeled ones that are ms-1 mM-1. 
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State 
variables

m
n

gmax
(S/cm2)

Vrev
(mV)

!
(s-1)

"
(s-1)

gNa-f

activation

inactivation

3

1

.013 87.39

0.9(V+19)/(1-exp(-(V+19)/10))

0.315 exp(-0.3(V+44))

36 exp(-0.055(V+44))

4.5/(1+exp(-(V+11)/5))

gNa-p

activation 1

2e-5 87.39

0.91(V+40)/(1-exp(-(V+40)/5))

x#=1/(1+exp(-(V+40)/5))

$#=5/(!+")

-0.62(V+40)/(1-exp((V+40)/5))

gNa-r

activation

inactivation

1

1

2e-4 87.39

2.4e-4-0.015(V+4.5) /
((exp(-(V+4.5)/6.8)-1))

0.96 exp(-(V+80)/62.5)

0.14+0.047(V+44)/(exp((V+44)/0.11)-1))

0.03 exp((V+83.3)/16.1)

gK-V

activation 4

.003 -84.69

0.135 (V+25)/(1-exp( -(V+25)/10)) 1.69 exp(-0.0125(V+35))

gK-A

activation

inactivation

3

1

.0032 -84.69

2.44/(1+exp(-(V+9.17)/23.32))

0.11/(1+exp((V+111.33)/12.84)

x#=1/(1+exp(-(V+38)/17)) 

y#=1/(1+exp((V+78.8)/8.4))

0.5 exp(-(V+18.28)/19.47)

0.1/(1+exp(-(V+49.95)/8.9))

gK-IR

activation 1

.0009 -84.69

0.4 exp(-0.041(V+83.94)) 0.51 exp(0.028(V+83.94))

gK-Ca

activation 1

.003 -84.69

2.5/(1+1.5e-3/[Ca] exp(-0.085V)) 1.5/(1+[Ca]/(0.15e-3 exp(-0.085V)))

gCa

activation

inactivation

2

1

4.6e-4 129.3

0.148 exp((v+29.06)/ 15.9)

3.9e-3exp(-(v+48)/18.2)

0.249*exp(-(v+18.66)/25.6)

3.9e-3 exp((v+48)/83.3)

gK-slow

activation 1

2.5e-4 -84.69

0.01 exp(0.025(V+30))

x#=1/(1+exp(-(V+35)/6))

0.01 exp(-0.05(V+30))

gLeakage 5.68e-5 -16.5

gGABA 3e-5 -65

Calcium 
concentration

d=200 nm
"Ca=1.5

         [Ca2+]0 = 100 nM

Table S1



AMPA

rDC, rCD 0.013, 1.12

rCO, rOC 5.4, 0.82

NMDA

rC0C1*, rC1C0 5, 0.1

rC1C2*, rC2C1 5, 0.1

rC2D, rDC2 0.00012, 0.009

rOC2, rC2D 0.966, 0.03

Table S2




