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ABSTRACT
In this paper, we propose an extension of the recently 
introduced  metrical  information  [1].  We give  a  local 
version of it, where the similarity between two events 
can depend on the position in the event space. While the 
original  method  demands  the  equivocation  (or 
conditional entropy) to be zero and then maximize the 
information,  we  here  define  an  objective  function 
requiring  a  trade-off  parameter  between  the 
minimization of equivocation and the maximization of 
information. We show that the well-known perceptual 
magnet [2] effect can be understood as a consequence 
of  maximizing  this  objective  function  in  a  low-noise 
regime.  In  a  simple  case  with  narrow  gaussian 
categories,  it implies that an optimal decoding system 
should  perform  very  fine  discrimination  near  the 
boundaries  of  the  categories  while  being  less 
demanding  near  the  centers  of  the  categories.  This 
mechanism could be implemented as exhibited in [3]. In 
the spirit of [4], we here show how the optimal decoder 
should behave in the low and high-noise regimes.
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1.  Introduction

Shannon  information  theory  is  one  of  the  best 
framework to estimate the amount of information that is 
conveyed by a noisy transmission system. It tells how 
much a decoder can possibly know about the source by 
reading  the  message  transmitted.  In  the  field  of 
neuroscience,  it  has  been  extensively  used  [5,  6,  7]. 
However,  readout  neurons  have  properties  that  make 
them depart from the ideal observer, properties that may 
be  formalized  by  metrics.  In  addition,  there  may  be 
details of the code that it is not relevant to convey. A 
recent proposal [1] -akin to the bottleneck information 
[8]  and  to  Relevant  Component  Analysis  [9]-  was to 
merge the metrics with information theory so as to find 
the metrics (and thereby the properties of the neurons) 
that make them transmit the most relevant information. 
We  propose  to  generalize  the  previously  introduced 
metrical information by allowing the similarity function 
to depend on the position in the event space. 
An  information-theoretic  measure  embedding  the 
metrical  relations  between  the  events  was  recently 
introduced  to  link  the  information  conveyed  by  a 
neurotransmission system on account of the properties 

of the downstream decoder. This measure is based on 
an entropy that can be written:

H∗ X =−∑
x

p  x  log∑
y

p  y φ  x,y 

where φ(x,y) is a similarity measure between the events 
x and y that depends on the distance between them. The 
distance and the similarity  measure are  thought of as 
representations  of  the  properties  of  the  downstream 
decoder.  In  the  original  definition,  the  similarity 
measure  was  taken  as  an  all-or-none  function  of  the 
distance with a cut-off value called the critical distance. 
It was then proposed that an optimal decoder should at 
the same time minimize the equivocation (conditional 
entropy) and maximize the information so as to be able 
to reconstruct the stimulus unambiguously. This could 
be  done by choosing an  appropriate  definition of  the 
distance and a well-tuned critical distance. 
We wish to make a remark concerning this definition. It 
is global: the similarity measure does not depend on the 
location  on  the  event  space.  This  means  that  the 
discrimination capacity is the same over all the space. 
We  here  introduce  a  local  version  of  this  metrical 
entropy. We then show that the attempt to maximize the 
information  and  minimize  the  equivocation  can  be 
formalized  as  maximizing  a  single  objective  function 
that takes a trade-off parameter as input. When applying 
this  optimization  to  gaussian  distributions,  we  found 
results  very  much  similar  to  the  physiological 
phenomenon of perceptual magnet.

2. Methods

The metrical information is a reformulation of Shannon 
Mutual  Information  that  takes  into  account  the 
similarity  between  objects.  It  may  come  in  two 
versions: one is global in the sense that the similarity 
measure  is  invariant  under  translations  in  the  output 
space. In the local version, the similarity measure may 
depend on the output. This is the latter version that will 
be  used  henceforth.  In  this  version,  the  information 
(resp. equivocation) is maximum (resp. minimum) if the 
outputs of a category are all closer than they are from 
the outputs of the other categories. Indeed, in that case, 
a  similarity measure  at  a  given point  includes all  the 
responses  to  the  same  category  while  excluding  all 
other responses. Note that here, the similarity measure 
can be thought of as the processing of the inputs by the 
nervous system. It is symbolic in the sense that we do 
not  claim  it  should  be  implemented  at  some  precise 
location,  but  could  be  the  result  of  a  multi-stage 



processing. The crucial variables in these measures are 
the similarity  measures  at  each  point  in  the  response 
space. In case one wants to optimize the discrimination 
of categories,  i.e. maximize the hit rate and minimize 
the  false  alarm  rate,  how  should  these  variables  be 
chosen? Here,  instead of only trying to maximize this 
information, we will look for conditions that maximize 
an objective function defined as:
Q  R,S  =I∗R,S −αH∗ R∣S          (1)

If α = 0, the objective function is just the information. 
The factor α determines your main aim: minimizing the 
metrical  equivocation  or  maximizing  the  metrical 
information. Thus, we do not want an observer that acts 
a  the  perfect  Shannon  observer  by  differentiating  as 
much  as  he  can  by  taking  into  account  every  slight 
differences  between  responses.  The  problem  is  more 
that  of finding the characteristics  of an observer  who 
would really reconstruct the categories.

Since  we  now  consider  a  local  version  (where  the 
similarity  function  depends  on  the  position  on  the 
space),  we define the specific  information given by a 
response r:

i∗r,S =∑
s

p r∣s  log
∑
r'

p r'∣s φ r,r' 

∑
r'

p  r' φ r,r' 
    (2)

and the specific equivocation:

h∗ r∣S =−∑
r

p  r∣s  log∑
r'

p r'∣s  φ r,r'  (3)

and thus a specific objective function:
q r,S =i∗r,S −αh∗ r∣S 

3.  Results

Let us consider a simple case with a few categories and 
responses  lying  in  the  set  of  real  numbers.  For 
simplicity,  let  us  assume  a  Gaussian  distribution  for 
each object i, with mean μi and standard deviation σi . 
Let us simplify even more by considering the variances 
to  be  equal,  σi  =  σ,  i.  Henceforth,  optimal∀  
discrimination is  studied by considering the objective 
function defined in Eq. 1 and by varying the trade-off 
parameter α. Recall that a large α implies maximizing 
the  metrical  information  and  minimizing  the  metrical 
equivocation  simultaneously,  whereas  small  α  values 
relax  the  minimality  constraint  on  the  metrical 
equivocation.  We  will  consider  Gaussian  similarity 
kernel functions φ(x,y) = exp((x−y)^2/2β^2) , which are 
more realistic than Heaviside-like all-or-none functions. 
Different  standard  deviations  β  will  be  employed  in 
order  to  modulate  the  selectivity  of  the  similarity 
function  (the  lower  β,  the  more  selective  φ).  In 
particular, we will allow β to vary as a function of space 
to  see  what  regions  of  the  input  space  should  be 
discriminated more than the others.  Figure 1 presents 
the  results  obtained  with  four  different  values  of  the 
trade-off parameter, α =0, 10−7 , 10−5 , 1, in the presence 
of low-noise category distributions (blue curves).  The 
optimal width β of the local similarity kernel is shown 
at each value of the response space (black curves). The 

Illustration 1: Optimal discrimination in high-noise regime. Five categories (blue) are to be 
discriminated. The results were obtained for 4 different values of the trade-off parameter 

α =0, 10−7 , 10−5 , 10−1 . For all values of α, the width is largest in-between categories.



specific information i  (r; S), Eq. 2, and equivocation∗  
h  (r|S), Eq. 3, are also plotted (solid and dashed red∗  
curves, respectively) to show the contribution of all the 
responses  to  the  expectation  values  over  the  entire 
space. For α = 0 (Fig. 1a), the goal is to maximize the 
information  without  taking  into  account  the 
equivocation. The best solution is to have very narrow 
similarity functions so as to discriminate every pairs of 
responses:  the  width  β  is  thus  always  zero.  For  low 
(positive)  values  of  α,  the  width  of  the  similarity 
function  can  be  large  at  the  center  of  a  category 
distribution since it decreases the equivocation without 
impinging on the information. This is apparent in Fig. 
1b, corresponding to α = 10−7 , where the values of the 
equivocation  drop  at  the  center  of  the  categories 
compared to the α = 0 case. On the other hand, to keep 
the information maximum, the kernel function  φ must 
be  narrow  in-between  categories  (increasing  the 
selectivity of the decoder). Indeed, a higher selectivity 
in-between categories guarantees a high information, at 
the price of a large equivocation, since objects at the 
center of a category will not be considered similar to 
those  at  the  edge.  For  α  =  10−5 ,  Fig.  1c,  the 
equivocation is already almost nil at the center of the 
categories  (with  a  full  information),  though  it  is  far 
from  being  zero  in-between  them.  However,  the 
contributions  to  the  equivocation  of  these  events  are 
small because their probability is low. The equivocation 
further decreases  only when α is drastically increased 
(Fig.  1d,  α  =  1).  The  price  to  pay  is  a  loss  of 
information  in-between  categories  since  now,  objects 
belonging to some category  are  considered similar  to 
objects of other categories. 
We here see the effect of the trade-off parameter at each 
point: in general, a response near the edge of a category 

contributes  largely  to  the  equivocation  as  long  as  its 
similarity with the center of the category (which has a 
high probability) is low. 
However,  increasing  its  width  impinge  on  the 
information. At high values of the trade-off parameter 
(e.g. α = 1), the similarity measure is wider in-between 
categories than at their centers. The reason is that, for 
the specific equivocation to be zero (i.e. all objects from 
the same category considered identical),  the similarity 
measure  at  the  boundaries  of  a  category  needs  to  be 
twice as wide as that at the center of a category. If we 
arbitrarily give Shannon information and equivocation 
values of 1, the metrical information and equivocation 
are respectively:

α  I  (R, S) ∗ H  (R|S)∗

0 1 1

10−7 1 0.63

10−5 1 0.41

1 0.96 0.05

                                
which shows that, in this case, it is feasible to decrease 
the equivocation without impinging on the information. 
Figure  2  shows  that  in  the  high-noise  regime  (large 
variance  of  the  distributions)  the  optimal  cut-off 
distances  behave  differently  than  in  the  low-noise 
regime. The optimal widths β of the similarity kernels 
tend to  be  large  at  the interface  between classes  and 
rather small near the centers. The situation in which the 
similarity measures are wide at the center of categories 
never occurs in the high-noise regime. As a onsequence, 
it  is  almost  impossible  to  decrease  the  equivocation 
without diminishing the information. 

Illustration 2: Optimal discrimination in low-noise regime. Five categories (blue lines) must be discriminated. The results 
were obtained for values of the trade-off parameter α =0, 10−7 , 10−5 , 1. For low values of α, the width β of the similarity 
measure at each point (black curve) is larger at the center of the categories and smaller between them (indicating lower and 
higher selectivity, respectively). As the trade-off parameter α increases, the width becomes highest in-between categories. 
At α = 10−5 , the information (resp. equivocation) is still high (resp. already low) at the center of the categories.



If  the  Shannon  information  and  equivocation  are 
attributed values of 1, the information and equivocation 
are respectively:

α  I  (R, S) ∗ H  (R|S)∗

0 1 1

10−7 1 0.94

10−5 1 0.69

10−1  0.98 0.19

The results of Figs. 1,2 suggest that for low values of 
both  noise  level  and  trade-off  parameter  α,  a 
phenomenon of high selectivity in-between categories 
and  low selectivity  at  their  centers  occurs.  For  other 
values  of  these  two parameters,  optimal  selectivity  is 
found to be higher at the center of categories.

4.  Discussion

4.1  The perceptual magnet
When  attempting  to  maximize  the  objective  function 
defined with respect to the metrical entropy on a set of 
Gaussian  categories,  two  types  of  behavior  were 
observed: the selectivity of the similarity measure can 
be larger either at the center of the distribution of each 
category or between categories.
The  first  scenario  can  be  linked  to  the  perceptual 
magnet effect [2], which has been first introduced in the 
field of psychoacoustics in the early 90s. Each category 
of  sound  (for  example  each  type  of  vowel)  has  a 
prototype,  an  element  that  best  represents  the  vowel. 
The other elements of the category are perceived closer 
to  the  prototype  than  their  physical  distance  would 
suggest, as if the prototype was pulling the elements of 
the category toward itself,  hence the term ’perceptual 
magnet’.  The  perceptual  space  is  thus  warped  with 
between-category  expansion  and  within-category 
compression.
The results presented here in the low-noise regime for 
low values  of  the  trade-off  parameter  α  can  then  be 
related to the perceptual magnet. Indeed, the width of 
the  similarity  measure  at  the  center  of  a  category  is 
large,  meaning  that  objects  around  are  seen  as  very 
similar, while the width is small in-between categories, 
making the close objects dissimilar. It is interesting to 
highlight the fact that the perceptual magnet may not be 
a  highly  generic  phenomenon,  but  rather  appear  in 
limited  ranges  of  parameters  only.  The  above  results 
suggest that it seems to be a low-noise regime effect in 
circumstances where the emphasis is on discrimination 
of different stimuli rather than identification of similar 
ones. We studied in more details the predominance of 
the  two  types  of  behavior  (i.e.  highest  width  inside 
categories  or  in-between  them).  We  defined  the 
amplitude of the perceptual magnet as the logarithm of 
the ratio between the width of the similarity measure at 
the exact  middle between categories  and at  the exact 
center  of  categories.  A  highly  negative  value  of  this 
amplitude  would  correspond  to  a  very  pronounced 

perceptual magnet effect. The phase diagram of Figure 
3 displays the amplitude of the perceptual magnet effect 
with  respect  to  the  noise  level  and  to  the  trade-off 
parameter α.
The  varying  width  of  the  similarity  measure  can  be 
understood in two different ways. The first one is that 
the  input  space  is  isometrically  represented  in  the 
nervous patterns and some neural decoder can perform 
the task of the similarity measure. Yet, it could also be 
the  result  of  a  remapping  through  an  ensemble  of 
neurons  with  a  non-uniform  density  followed  by  a 
decoder using a uniform similarity measure. Bonnasse-
Gahot and Nadal (2008) [3] presented a study based on 
Fisher information analysis and showed that a way to 
implement this mechanisms may be to  have a higher 
receptive  field  density  between  the  categories  than 
within categories. In the light of metrical information 

analysis,  this  possible  neural  coding  principle  can 
interpreted  the  following  way.  The  input  space  is 
mapped to the space of discharge rate of the neurons 
(i.e. tuning curves). In this space, categories are much 
more separated with large no man’s land between them. 
Then using a uniform similarity measure on this space 
yields  the  maximum  objective  function.  Here,  the 
optimal similarity measure is obtained in two steps: first 
an  optimal  neural  coding  that  relatively  contracts  the 
categories  with respect  to the distances between them 
and then a decoding scheme (whose implementation is 
not given) that maximizes the quality factor. The simple 
example  of  Figure  3 suggest  that  the two approaches 
(Fisher and metrical information) yield similar results.

4.2  Phase diagram

It  is  interesting  here  to  highlight  the  fact  that  the 
perceptual  magnet  may  not  be  a  highly  generic 
phenomenon,  but  rather  appears  in  limited  ranges  of 

Illustration 3: Example of 2 categories (red curves) 
and a population of tuning curves (blue lines). In the 
response space of the population of neurons, the 
distance between x = 2 and x = 4 is equal to d1  2.8,∼  
while that between x = 4 and x = 6 is d2  3.8.∼  
Therefore, the categories are much smaller compared 
to their mutual distances.



parameters.  In  particular,  it  seems to  be  a  low-noise 
regime effect in circumstances where the emphasis is on 
discrimination  of  different  stimuli  (high  information) 
rather  than  identification  of  similar  ones  (low 
equivocation).
We studied in more details the predominance of the two 
types of behaviour:  highest width inside categories  or 
in-between  them.  We  defined  the  amplitude  of  the 
perceptual magnet as the logarithm of the ratio between 
the width of the similarity measure at the exact  middle 
between categories and at the exact center of categories. 
A highly negative value of this amplitude corresponds 
to  a  very  pronounced  perceptual  magnet  effect.  The 
amplitude is plotted with respect to the noise level and 
to the trade-off parameter in fig. 4.

5.  Conclusion

We  have  shown  that  the  metrical  information  yields 
results  that  can  be  related  to  the  perceptual  magnet 
effect. It theoretically allows us to give estimates on the 
presence  of  this  phenomenon  in  a  two-dimensional 
phase space consisting of the noise level and the goal of 
the communication system (maximizing true positives 
or minimizing false positives). In the low noise regime, 
approaches  based  on  Fisher  information  [3]  yielded 
similar  results  if  we  make  a  straightforward  link 
between the firing rates of a population of neurons and 
the distances they implement. It  is indeed known that 
Fisher  information  is  somewhat  dependent  on  the 
metrics of the event space. This observation explains in 
part  why  both  approaches  yield  similar  results.  But, 
more  than  this,  we  think  that  future  work  may  help 
clarifying  further  the  relations  between  metrical 
information and Fisher information and thus bring light 
on  the  relations  between  classical  information  theory 
and Fisher information [10].
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Illustration 4: Perceptual magnet phase diagram. The 
perceptual magnet amplitude is defined as the logarithm 
of the ratio of the width of the similarity measure 
between categories and at the center of categories. This 
amplitude is plotted with respect to the noise (category 
width) and to the trade-off parameter. The perceptual 
magnet appears to occupy only a small portion of the 
phase space: in the low-noise regime and small trade-
off parameter.
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