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SPIKE—TIME METRICS ANALYSIS OF ANTERIOR
CINGULATE CORTEX ACTIVITY IN AN
EXPLORATION/EXPLOITATION TASK

ABSTRACT

Anterior Cingulate Cortex (ACC) single units firing rate modulations correlate with the
behavioral policy of monkeys engaged in an exploration/exploitation task. The possible
importance of spike timing is a central issue that remains to be investigated. A well—-
designed tool allowing to address it is Victor and Purpura spike train metrics, which
quantifies how dissimilar two spike trains are, as a function of the importance of spike
timing. When analyzed with this method, the data show that adequate spike timing
sensitivity increases the discrimination between the strategy switch moment and ex-
ploitation moments by single units, single trial activity. Further, temporal sensitivity also
improved the correlation between single cell, single trial activity at the moment of the
behavioral switch, and response times after the switch. Finally, we used the multi—units
extension of the Victor and Pupura metrics on pairs of cells and found that the response
of the cell whose activity appears more related to the switch is not denatured by the fir-
ing of the least switch related cell. Thus, these results suggest that a ‘downstream’
neural network which would decode ACC single units activity to produce an adapted
motor output may be sensitive to spike times.
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1 Introduction and rationale of this work

In experimental neurophysiology, a classical approach consists in establishing correlations between an experi-
mental contingency (e.g. presence of a stimulus), and the neural response, often quantified as a spike count or a
spike rate of a single unit or of multiple neurons. During the last 20 years, some researchers have been trying to
extend this procedure, to see how and how much the neural responses could be informative about the external
world. Indeed, to produce an adapted motor response, the brain should access signals from sensory receptors
which can be mapped on the ensemble of stimuli (encoding). The subsequent stages of neural processing must
be able to decode these signals, which means that they should react differentially to the different activities
produced in different contexts.

The methodology initially consisted in reconstructing a visual stimulus from the neural responses [6]. A
related approach consists in predicting, based on the neural activity, which stimulus, among a known set,
was presented to the animal [16]. In both cases, information theory (and, in particular, Shannon mutual in-
formation [36]) can be used to quantify how good the prediction is. This decoding process (in reference to
machine—based signal processing) relies on the assumption about the ability of a neural decoder (a putative
neural network) to discriminate between some features of the neural activity which are informative about a
stimulus. For instance, in some situations, the precise timing of spikes has been shown to be informative [16].
Moreover, there is evidence that a neural decoder could be sensitive to this timing (but see [21]). Notably, an
animal can discriminate two types of electrical stimulations only differing by timing; moreover, the discrimina-
tion ability of mice has been shown to be incompatible with a spike count code [26]. However, different codes
might be used in different brain areas and/or contexts [22]. In addition to the temporal precision of the code,
another issue is how the responses of many neurons combine to produce a perception or a motor output. More
precisely, the response of two neurons can provide redundant, cumulative or deleterious information [4, 32].

Spike train metrics (e.g. [39, 4]) is one of the tools designed to test more precisely these questions. It
consists in computing a distance between two spike trains which is parameterized relatively to the importance
of the timing of spikes, and to the importance of the identity of the neurons which fired. This distance measures
how different two spike trains are. This approach has several advantages: it does not necessitate to establish
arbitrary boundaries for counting spikes into bins, its decoding properties can be mapped on a simplified neural
decoder (and thus, it respects at least some of the biological constraints on neural decoding), and it is less
sensitive to a bias in information computing.

In previous studies, the so—called neural coding approach has been applied in both the sensory or motor
parts of the nervous system (visual areas [39]; haptic receptors [33], auditory system [23], gustatory system [8];
olfactory system [24]; motor area [5]), or, more rarely, to perceptual decision making [22, 30]. However,
the same questions are certainly relevant to the neural processes underlying action planning, and behavioral
policy management (for instance, strategy switching). The temporal accuracy issue is particularly important
because of the neural plasticity and learning mechanisms that these tasks necessitate [2]. The difficulty to find
a temporal reference from which one could compare the timing of spikes, as well as the difficulty to define
different behavioral situations that the neurons might discriminate, might explain why this issue has not been
addressed yet, to our knowledge. However, these difficulties might be overcome in the studies addressing the
question of strategy monitoring, when the animal has to flexibly adapt between exploring new possibilities and
repeating a learned action sequence (i.e. exploiting), once that a reward has been received, as in Quilodran
et al. (2008) [31]. In their study, Quilodran et al. recorded activity of single units and small (up to 5/6
units) clusters in the Anterior Cingulate Cortex (ACC) of awake non-anesthetized monkeys. This area receives



inputs from the basal ganglia [40], which are themselves responsive to salient events as reward delivery [14].
More precisely, neural activities from ventral tegmental area and substantia nigra have been shown to correlate
with the difference between expected and received reward (reward prediction error [35]), and with the reward
uncertainty [9], which are variables that are arguably important for action learning and planning. The ACC is
also connected to the lateral prefrontal cortex, which in particular seems involved in memory maintenance of
contextual information necessary to choose an appropriate action plan [28]. Finally, ACC projects onto motor
areas, which corroborates its putative role in action monitoring [28].

Numerous studies in macaque monkeys have reported ACC activity linked to the mean reward expectation
associated with optimal behavior [3], to reward prediction error or expectancy [15, 37] associated or not with a
particular motor sequence [12, 29], and more recently with unsigned reward prediction error (or surprise) [11].
The activity seems to be task dependent in the details [11], but a role in behavioral strategy management (ex-
ploration of new possibilities versus exploitation of learned associations) seems to be a constant. Accordingly,
lesion studies tend to show impacts on the learning of action value [17] or on non automatic, cognitively de-
manding behavioral adaptation (rat study, [10]). In humans, lesions lead to an inability to repress automatic
actions triggered by external stimuli (as grasping a door knob), and deficits in production of self—initiated ac-
tions (as spontaneous speech), which is again in line with the idea that ACC is involved in weighing different
actions based on the experience of the animal and the current contingency [28].

Previous work established in this task the relationship between averaged single unit activity and behavioral
policy [31]. In another task and another animal, population trial by trial activity [19] has been used to decode
different task epochs, some of which corresponding to exploitation vs. exploration. Building on this, we
hypothesized that ACC activity in single units and in pairs of units can encode the shift between exploration
and exploitation, and that different neural codes (differently accounting for spike timing resolution and neural
identity) might have different information content. Finally, we hypothesized that an informative neural code
that may additionally be exploited by a neural network and thus be causally related to behavior would also
better correlate with the behavioral response times of the animal. To test these hypotheses, we used the Victor
and Purpura metrics [39], as well as the multi—units extension of this metrics [4]. As it is the oldest one, several
papers have demonstrated its ability to segregate between spike train groups in many different experimental
situations, and simulations have revealed that its efficiency is often better than, or equivalent to, the efficiency
of other metrics (e.g. [25]).

Our analyses show that the activity of a subset of ACC single units discriminate well between two moments
that only differ in terms of the behavioral policy adopted by the animal (exploration vs. exploitation). They also
suggest that the discrimination is more efficient when the temporal structure of ACC spike trains is properly
accounted by the metrics. Moreover, the proposed metrics analysis allows single-cell-single-trial activity at
the moment of the behavioral shift (i.e. from exploration to exploitation) to predict the response latency of
the animal at the moment of the following action (6 seconds later). We show that the correlation between
single-cell-single-trial activity and behavioral response latency is better captured by the temporal structure of
spike trains. Finally, our preliminary results on multi—unit metrical analysis suggest that this correlation is not
impaired by mutual interference between two ACC neurons recorded simultaneously.



2 Methods

2.1 Neurophysiology and behavior

Details about the task and the recordings are described elsewhere [31]. Briefly, the task consists in blocks of
trials (problems) in which monkeys (Macacca mulatta) need to find by trial-and-error which target among a
set of four is rewarded. During the first period of a block (exploration), monkeys search for the correct target
in successive trials. After discovery of the goal target they can repeat the correct response for several trials.
Indeed data show that monkeys then switch behaviorally to an exploitative state (see Fig. 1, page 9). They will
be rewarded at least 3 additional times for touching the same target. In = 10 % of the remaining trials, they will
be rewarded 7 additional times. A signal (flashing targets) then indicates that a new problem starts, i.e. a new
target will be rewarded. In 90 % of the trials, the following target is different from the preceding one. In 50%
of the trials, the reward is big, and it is small in other trials.

The data analyzed here came from monkey M of Quilodran et al. (2008) [31], and consist of 145 ACC
single units recorded in clusters of 1 to 5 neurons. Please note that in Quilodran et al. (2008) [31] the first—
reward trial is referred to as ‘CO1 trial’, whereas the following rewards are called ‘Corr trials’. It is of importance
that monkeys have been trained for months or years before the recordings, and thus they perfectly know the
task. Consequently, their search strategy is optimal and they are making little if any errors in exploitation. They
almost always predict the rewarded target when they have made three errors, and they almost always begin a
new problem by choosing a different target from the previously rewarded one.

2.2 Choice of temporal reference

We wanted to study neural activity potentially related to the behavioral switch, which is likely to occur after the
monkey received the first reward. The reward time was chosen as a temporal reference for all neural analyses
because, as it relies on a simple mechanical push, it is more precise than the touch time recorded on the tactile
screen. Additionally, the pump produces a sound which seems relevant for the monkeys and provides a precise
"expected reward time" for the animal (unpublished observation by Emmanuel Procyk).

2.3 Spike train distances algorithms

2.3.1 Single unit Victor and Purpura distance

We used the single unit Victor and Purpura algorithm to compute distances between spike train pairs [39]. The
distance is taken as the minimal cost to transform the first spike train into the second one. Such a transformation
consists in using sequentially one of the three following steps:

e adding a spike, for a cost of 1
e deleting a spike, for a cost of 1

e changing the time of a spike by an amount dt, for a cost ¢ - dt, where ¢ is a free parameter that allows the
importance of spike timing in information encoding to be continuously varied.

When ¢ = 0, there is no cost for changing the timing; consequently, the distance becomes an absolute difference
of spike count between the two spike trains. As ¢ increases, changing the timing of spikes is more and more
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Figure 1: Structure of the task: Each problem begins by the touch of the lever on the screen. The monkey is
then required to fixate a fixation point. The lightening of the targets indicates to the monkey it can choose a
target and saccade toward it. The animal then receives a go signal allowing it to touch the chosen target. If
this was the good target, it receives a reward and will resume the same actions for generally three trials more.
Else, it will have to choose a different target on the next trial in order to discover the rewarding target. After
the monkey has received the maximum number of rewards, the signal to change informs it that a new problem
(i e probably a new rewarded target direction) starts. The moment at which the analysis focuses (reward time)
is indicated.

costly, and to have a small distance, a pair of spike trains must have spikes that occur close to one another.
Spikes may be moved to be matched if they are separated by at most 2/q s; if they are further away, it is less
costly to delete one spike and then to reintroduce a new spike at the good time.

2.3.2 Multi—units Aronov / Victor and Purpura distance

The distance approach has also been adapted to the comparison of the responses of groups of units between
different categories [4]. Two different putative coding parameters are varied: the temporal precision, and the
importance of knowing the identity of the neuron which fired a spike. For example, if two neurons receive the
same input and fire with uncorrelated noise, then it is better to simply pool their responses to retrieve the signal.
On the contrary, if two neurons encode two signals that are deleterious to each other, then it is important to
distinguish between them to retrieve a maximum of information. Another case when neural identity could be
important is when the activity of neurons is correlated when they respond to the same external input (so termed
"noise correlations”, in which the deviation of the activity from the mean is correlated between neurons) and



when, additionally, more information might be gained by taking these correlations into account [20]. More
detailed discussion about this issue is given in the Discussion (Sec. 4.2, page 37).

The multi—unit metrics will compare the responses of n cells in two different trials, by building two ‘multi—
unit spike trains’ in which each spike has a label corresponding to the identity of the neuron which fired. The
distance between them is the minimal cost to transform one of them into the other, by using the following steps:

e adding a spike, with a cost of 1

e removing a spike, with a cost of 1

e changing the time of a spike by an amount dt, with a cost g - dt
e changing the identity of the neuron which fired, with a cost k

If k& = 0, then the neuron identity does not matter at all; if k¥ = 2, the responses are never switched between
neurons, because removing the spike from neuron 1 in sequence 1 and adding a spike from another neuron at
the time we want is less costly (cost 1+1=2). In general, two spikes from two different neurons may be matched
if2>qdt+kedt < %

2.3.3 Algorithms, parameters and computation

The calculations were run on a cluster of 320 nodes (Consorzio interuniversitario per le Applicazioni di Super-
calcolo Per Universita e Ricerca — CASPUR), running MATLAB R2007a and MATLAB R2007b.

We used codes freely available at the website of Jonathan Victor (http://www—users.med.cornell.edu/ jd-
victo/metricdf.html). For the single units analyses, the ¢/MEX code of Daniel Reich was used. For the multi—
units algorithm, the vectorized MATLAB code by Thomas Kreuz was used, to which a piece of code handling
the cases when two spike trains are empty have been added.

For both single and multi—unit analysis, we tested temporal costs ¢ € [0, 5, 10, 15, 20, 25, 30, 35, 40, 60, 80].
For the multi—units analysis, we also considered the identity costs k € [0,0.25,0.5,0.75,1,1.25,1.5,1.75, 2].

2.4 Formal definitions of the measures used to study encoding
2.4.1 Measure of the discrimination power thanks to the spike time metrics

Distances are computed for each spike train pair into the dataset. A neural decoder could retrieve to which
category x a spike train belongs if its ‘global distance’ to the spike trains of this category x is smaller than
its ‘global distance’ to the spike trains of other categories. This corresponds to a gross physiological approx-
imation, in which a downstream decoding neuron with a given time constant would fire when its input spike
train has a low distance relative to a learned ‘stereotypical’ spike train produced in that situation. If temporal
structure matters (temporal cost ¢ > 0), the decoder would fire when its synaptic entry (the spike train) would
match a learned (more or less precise) temporal pattern (thanks to ‘coincidence’ detection with other inputs for
instance). However, if spike count is more optimal (temporal cost ¢ = 0), the ‘decoder neuron’ would fire when
a sufficient number of presynaptic spikes are produced. The firing (or silence) of this postsynaptic neuron is
informative about whether the presynaptic spike train was produced in the ‘category x’ context.
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The classical approach [39, 4, 33] was to define the global distance from a spike train to a category of spike
trains (i.e. all spike train emitted when a certain stimulus was present, or when the first reward was given) as
follows:

D(s, sc)?

spike trains sc €C, sc#s

N,

sc

D(spike train s, category C) = (D

where N, relates to the number of spike trains (if appropriate, different from s) in category C, and z < 0;
classically z = —2. This negative exponent allows to tackle the issue of the outliers with big distances, by giving
more importance to small distances in the group. Hence, the classification is biased toward those categories
which contains spike trains that are very close to s, paying less attention to the presence of spike trains that are
very different from s. The spike train s is classified in the category for which D(spike train s, category C')
is minimal; if N categories have an identical minimal distance D(spike train s, category C), NLC spike
train is attributed to each category.

In our data set, this methodology seemed partly inappropriate for the spike count. In effect, if two spike
trains have exactly the same number of spikes, then their distance is nil, and for each category C in which
such a same spike count exists in one trial, D(spike train s, category C') will be nil. However, intuitively,
if category 1 produces most of the time spike trains with N1 spikes, and category 2 produces most of the
time spike trains with N2 spikes but contains one spike train with N1 spikes, intuitively, a spike train with N1
spikes should be classified in category 1, not for 0.5 in category 1 and 0.5 in category 2. This is particularly
problematic for N1 = 0, because at times cells do not answer at all. For codes different from spike count, nil
distances are much rarer, and this is less an issue.

To avoid what seems to be an unfair disadvantage of spike count while addressing the problem of big
distances outliers, we also computed the distance of one spike train to a category as follows:

D(spike train s, category C) = median D(s, sc) )

spike trains sc €C, sc#s

In the following, we will refer to the first method as the "quadratic classification”, and to the second method as
the "median classification".

Once each spike train has been classified, one can build a "confusion matrix" in which the entry on line i
and column j is given by:

N; j = number of spike trains coming from category i that are classified in category j  (3)
The ability of the neural responses to discriminate between the two categories can then be assessed as follows:

e By computing the mutual information between the true categories and the reconstructed categories, as:

N¢ Ne N Nij
_ .J Niot
=30y N | e @
k=1 =1
Niot Niot
N¢ Ng
where N¢ is the number of categories, and Nyt = > > N; ; is the total number of trials. I(T,R) is zero
i=17=1

in the limit of big samples when the classification is random, regardless of the difference in the number of
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trials between categories (see derivation in the Appendix, Sec. A.1.1, page 41). However, the maximum
value that I(T,R) can take does depend on the imbalance between the number of trials in each category
(see the Appendix, Sec. A.1.2, page 42). Therefore, to allow a fair comparison between different cells

I(T,R)

with different number of trials available, we computed I = Tos (TR 35

- I(T, R)

I = NG Ng ®))
Ne 2 Nij /;1 Ni;
Z = Niot In | 2 Ntot

=1

Where I, (T, R) would be the value of the mutual information if the cells correctly classified all the
available trials.

Because of the limited sampling, we cannot estimate accurately the different entries of the confusion
matrix. Therefore, the information value computed in that way is upwardly biased [27]. This is a real
problem even when comparing between different costs g, because the bias also depends on the probability
distribution of the different entries of the matrix, which is cost dependent. However, it should be noted
that in our particular case, the bias should be small, because we do not have a big number of time bins
with low response probabilities as in the direct method. To address this issue (as in [33]), the bias was
empirically estimated as the mean value of I computed from an ensemble of 1000 sets (single units
analysis) or 100 sets (multi—units analysis) in which spike trains identities were randomly permuted
(randperm function of MATLAB), mixing up the spike trains between categories while keeping the same
number of trials by category. This mean "chance information" was subtracted from the value obtained
in the true data. Intuitively, this is an estimate of the bias because it gives the value of the information
one gets because of limited sampling, when no real clustering of the responses occurs. This is a fair
estimate of the real bias whenever the true probability distribution is such that none of the entries of
the confusion matrix is empty [27], which is a fairly reasonable assumption (meaning that none of the
situation is perfectly discriminated by the responses; see the Appendix Sec. A.2.2, page 43 for a more
detailed explanation). Moreover, in the cases when it happens, it leads to an overestimation of the bias
which would be on the order of m, with median(Ny-iq1s) > 92 in our case, and less than 3 % of the
cells or couples of cells had less than 20 trials. Therefore, the possible overestimation is itself reduced to
a few percent of the total possible information, which is fairly less than the percentage of information for
the highly discriminating cells, which the analysis mainly focuses on.

When subtracting the estimated bias, if slightly negative information values were obtained, the value of
0 was assigned to the given data point. For the very significant cells which will be selected for further
analyses, the information bias was typically less than a few percents of the uncorrected information.

By computing the percentage of correct classification.

To avoid this measure to be completely dominated by the most numerous category, it is taken as:

Ne N
Z Ncorrcctly classified(C) Z: Ngo
Ntot(C) =1 Z Nivj
N¢ Jj=1
% correct = = (6)
NC NC
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Temporal cost =0 | Temporal cost q=5
Median method, information 49 57
Median method, % correct 52 59
Quadratic method, information 30 39
Quadratic method, % correct 34 47

Table 1: Number of cells found significant (over 145) at an analysis window length of 600 ms, for two example

COSIS.

Computation of this measure on shuffled data have revealed its ability to cluster tightly around %, while
still being large in highly informative cells, on the contrary of a weighted average of the percentage
of correct. However, because it weights similarly all categories regardless of their effective, whereas
information weights each category by its sample size, the two indices can in principle give different
results. It should also be noted that when requiring a high percentage of correct, one imposes that the
classification is allowed by smaller intra—categories distances when compared to between—categories
ones. This is in line with the very approximate physiological interpretation of the classification. In
contrast, the information can be quite high if spike trains from category 1 are very often classified in
category 2, whereas spike trains in category 1 are very often misclassified in category 2. Importantly, in
our data, the two measures were mostly consistent, indicating that this assumption was verified.

For each measure, many increasing analysis windows and many costs were tested against permuted data
at a 5% level. Therefore, for any cell or couple of cells, the fact that one of the test was significant could
occur with a probability much higher than 5%. Moreover, if we assume that one cell was significant by
chance at one cost and one window, it is also likely that it will also "appear" significant at close costs
and windows (and indeed, this effect was observed in surrogate data). It was therefore difficult to adjust
the p—value in a very rigorous way; moreover, lowering a lot this p—value would make it more difficult to
correctly evaluate with the permutation method. To select the significant cells, it was therefore required
that many tests were significant on several increasing time—windows, as detailed in the Results, Sec. 3.
Finally, the significance of the encoding in the population of cells studied was assessed by looking at
the number of cells that were significant at a fixed analysis window (0.6 s length, which is compatible
with the timing of reward-related activity described in [31]), and a fixed cost (test at 5 % level), and by
comparing it to the confidence interval of the expected number of cells at the risk of 5 % (see Table 1,
page 13). For example, at cost ¢ = 5 for single units, at least 39 cells were found significant.

The expected number of significant cells by chance at one cost (with the approximation that cells are
independent, which is untrue but probably reasonable given that cells were often not recorded simultane-
ously) is 0.05 - 145 = 7.5, and the 5% confidence limitis 7.5+ 2-145-0.05- 0.95 = 21 cells. Therefore,
we find more cells than expected by chance, which globally validates our method in this particular brain
area and task.
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2.4.2 Measure of information gain with couples of units as compared to single units

To measure if, and to which extent adding some neurons increase the information compared to looking at single
units, we used a measure G (for gain) defined as:

G(couplej) = Ij joint(q;, k;) —  max  (1i(q})) 9

single units i

Where the costs are chosen to maximize each information independently, i.e.:

(q;f, k;;‘) = argmax (I joint(q, k)) ®
(a,k)
q; = argmaz(I;(q)) ®

q
Therefore, this measure is positive if it is possible to extract more information with the multi—units measure as
compared to the single units one.

2.5 Statistical tests

All tests used were non parametric and two sided. They included the rank sum test (equivalent to a Mann-
Whitney U test) for testing differences in the median, the sign test to test if a median is different from 0, and
the Friedman anova to test for a differential impact between non independent factors (for instance, the temporal
and identity costs). Additionally, the function tmcomptest of the MATLAB file exchange was used to compare
proportions.

In addition to the tests available in MATLAB, a custom permutation test was built to assess the significance
of the difference between two groups for the correlation of two variables. The couples (variable 1 trial 1,
variable 2 trial 2) were randomly permuted between the two groups, while keeping the possible imbalance of
effective between groups. For each permutation, the correlation between variable 1 and 2 was computed for
each "shuffled group”, and the absolute value of the difference of correlation between groups was computed.
The difference in correlation in true data was considered significant if it was superior to the 95th percentile
of the permuted data (the number of permutations was usually 10000 and could be reduced to 1000 if more
precision appeared useless).
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3 Results

3.1 Correlates of the behavioral switch are detectable in ACC single unit activity

3.1.1 ACC single units activity discriminate better between first reward vs. subsequent rewards of a
problem when the temporal structure of the spike trains is taken into account

We used the Victor and Purpura spike train distance based classification to quantify how well the neural re-
sponses discriminate between the moment of the first reward of a problem (category 1), and the moment of
the second, third and fourth reward (category 2), when the monkey is rewarded for coming back on the same
target. In both categories, the monkey is submitted to the same external event: it receives a reward. The two
categories only differ by the behavioral state of the animal, dependent on the history of the trial. In category
one, the monkey receives an unpredicted reward and it has to change its action policy, i.e. to stop exploring the
targets and rather come back to the same target. In category 2, the monkey just receives the confirmation that its
choice was successful. As there is evidence that in the rare cases (~ 10 % of the problems) when the monkey
makes three errors during exploration, it can switch behaviorally before the first reward is received, because
the solution can be inferred, we only included the trials preceded by 0, 1 or 2 errors in the first category (see
the reaction time analysis in [31]; and in [29]). In the second category, any number of errors could have been
made during the exploration period. Because of the fact that the problems with 3 errors were only excluded
from category one, there is a very slight unbalance between the percentage of trials in each spatial direction
and the percentage of big vs. small reward trials in both categories. However, if this slight unbalance could be
used to discriminate between the two categories, then similar or higher classifications should be found in the
permuted data, because during the permutation trials are assigned randomly and similar or higher unbalance
arise between the two shuffled categories.

Because we were interested in the activity specific to the behavioral shift, which can only happen after the
first reward was given, we always began our analyses windows at the moment of the reward. To see the time
course of the discrimination ability of the neural responses, analysis windows of increasing sizes were used. In
Fig. 2, page 16, an example is shown for a single unit, with the median classification (see Methods, Sec. 2.4.1,
page 10). For each analysis window, many Victor and Purpura temporal costs g were tested. It can be seen
that for many different costs ¢, the discrimination was above chance for several consecutive analyses windows;
even though the time course of the discrimination ability and the maximum value reached depends on the cost,
with spike count based discrimination (dark blue curve, g=0/s) becoming unreliable for long analyses windows.
The results are in good agreement for the two discrimination measures (information and percentage of correct).
The maximum classification is around 90 % of correct or 60 % of the maximum possible information.

To assess robustly the influence of the temporal cost g on the discrimination ability, we selected an ensem-
ble of cells which showed high and consistent discriminating abilities the following way. A k—means algorithm
(with 20 iterations) was used to cluster the cells into two groups, for each combination of (classification mea-
sure, classification method). It was further imposed that for each cell a cost could be found for which the
classification was consistently superior to chance for a large (> 7) number of subsequently increasing analysis
windows. This selection procedure made no assumptions about the cost at which cells were most informative.
The number of selected cells is indicated in Table 2. The cells selected were mostly the same between groups,
and the cells selected with the information were exactly sub—ensembles of the group of cells selected with the
percentage of correct (see Table 2, page 16). We compared the proportion of neurons selected thanks to the
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Figure 2: Discrimination between first and subsequent rewards by a single unit, with the median method, for a
subset of Victor and Purpura temporal costs q (per second). The discrimination value is plotted as a function of
the analysis window length, with all windows beginning at the reward time. Only values that were higher than
the 95th percentile of the distribution of discrimination values in the permuted data are shown. Left: unbiased
percentage of maximum information with median method; right, percentage of correct with median method.

Quadratic method, information N =18 Common: N = 16
Median method, information N =20
Quadratic method, % of correct | N = 32 Common: N = 30
Median method, % of correct N =39

Table 2: Number of cells selected for each classification method/ classification measures. All the cells selected

with information were also selected with the percentage of correct when keeping the classification measure
constant.

function tmcomptest of the MATLAB file exchange. No significant differences were found between the median
and quadratic method, for either the information or the percentage of correct, whereas for a given method, the
percentage of correct selected significantly more cells.

Cells with high and consistent discriminating abilities The effect of the cost was assessed on these subsets
of ‘well encoding’ cells, for an analysis window length at which the maximum information was reached in
individual cells: 0.6 s (Fig. 3, page 17). Whatever the measure and the method used, the classification becomes
more reliable as one passes from a cost of zero (spike—count based classification) to superior costs (between 5
and 10/15/20), and then decreases when higher costs are used. One main difference between the two classifi-
cation methods is that, as expected, the quadratic method leads to bad classification with the spike count (see

Methods, Sec. 2.4.1, page 10). The time course of the classification was also assessed for different costs (Fig. 4,
page 18).
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discriminating power. The standard errors for the percentage of correct are too small to be visible.

The population—summed discriminability measures had a significantly higher median than the population—
summed discriminability measures in permuted data for at least one cost as soon as 100 ms after the reward for
the quadratic method, and as soon as 50 ms after the reward for the median method (ranksum test, p < 0.05).
This is in line with the beginning of the activity burst following the reward (see [31], their figure 3C aligned on
COl (i.e. first correct) trials).

Globally, for all temporal precision, the classification becomes more and more reliable as the time windows
become longer, with an increase in discriminability mostly before 450/500 ms, followed by a saturation.

The two classification methods behave a bit differently: again, the cost of O leads to little classification
with the quadratic method, whereas it allows considerable classification with the median method. Although
quadratic and median classifications tend asymptotically toward similar values of information (for analyses
windows of 0.6 s or 1 s, better cost with quadratic classification vs. better cost with median classification,
ranksum test, p > 0.05 for all methods), the median classification slightly tends to increase more quickly (for
an analysis window of 0.1 s, median method vs. quadratic method information at their best cost, p = 0.0371).
The differences are less pronounced for the percentage of correct.

It can be seen that the difference between a cost of 0 and superior costs is consistently maintained for
all sizes of analysis window. As for all costs the increase of the discriminability power followed the same
time course, we used the anova of Friedman to test for an effect of cost while removing the effect of time.
There was a very significant global effect of cost (for all methods, the p—values were below the precision limit
of the MATLAB functions when all costs € [0, 5,10, 15, 20, 25, 30, 35, 40, 60, 80] were included). We used
multiple comparisons with Tukey’s honestly significant difference criterion to try to assess a difference between
spike count based classification and timing sensitive classification. It only leaded to significant differences

for the quadratic classification (for both information and percentage of correct), with costs € [5,10, 15, 20]
significantly different from cost 0.
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Figure 4: Discriminability between first and subsequent rewards for well encoding single units. A) Information
with quadratic method; B) Percentage of correct with quadratic method; C) Information with median method;
D) Percentage of correct with median method. Curves represent the mean discriminability among a subset of
cells with high and consistent discrimination abilities. Bars represent standard errors. The different colors
represents different Victor and Purpura temporal costs q, as indicated in the legend (unit: / s). The figures on
top left of the graphs are the number of units used.

However, for the median method, when the Friedman anova was realized on the costs € [0, 5, 10], a very
significant effect of the cost was still found (see Table 12 in the appendix for the p—values, page 48). Moreover,
when the median discrimination was compared with a ranksum test between cost 0 and the best cost on individ-
ual analyses windows, significant differences of median were found for all analyses windows > 0.4 seconds for
the information (best cost=10), and for analyses windows > 0.8 seconds for the percentage of correct (best cost
=5). Finally, the information (but not the percentage of correct) showed a tendency to increase between cost 5
and cost 10 (Table 12 page 48, Friedman test). Further discussion about possible limits of Friedman anova is
developed in the Appendix, Sec. A.3, page 46.

Taken together, the results show that cells which discriminate well and consistently the first reward from the
subsequent ones are more informative when the temporal structure of the spike train is taken into account. As
high costs are not significantly different from cost 0, this also suggests that the timing precision of the spikes is
limited, and that weighting too much the timing blurs the differences between first and subsequent rewards.
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Figure 5: Discriminability between first and subsequent rewards for mildly encoding single units. A) Infor-
mation with quadratic method; B) Percentage of correct with quadratic method; C) Information with median
method; D) Percentage of correct with median method. Lines represent the mean on a subset of cells with
low and/or inconsistent discrimination abilities (see text). Bars represent standard errors. The different colors
represents different Victor and Purpura temporal costs q (/s), as indicated in the legend. The figures on top left
of the graphs are the number of units used.

Cells with low and/or inconsistent discriminating abilities For the cells with little and/or inconsistent dis-
criminating abilities (Fig. 5, page 19), the Friedman anovas showed an effect of the cost, but the post hoc
comparisons with Tukey’s honestly significance criterion were not significant. When the anova of Friedman
was tested for temporal costs g € [0, 5, 10], the effect of costs remained very significant, with one exception
were it was but a tendency (see Table 13 in the appendix for the p—values, page 49).

As a conclusion, in this population, the effect of the cost seemed still present, with cost higher than 0
allowing more discrimination than spike count, but the effects were less pronounced.

3.1.2 The correlation between single units activity at first reward and behavioral response time at the
next trial increases when temporal structure of the spike trains is taken into account
We hypothesized that if the units that were discriminating well between first and subsequent correct were

causally linked to the behavioral shift which occurs after the delivery of the first reward, then the activity
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Figure 6: lllustration of the process linking coding hypotheses and behavior. At each first reward trial, a certain
spike train is produced. The first reward is then followed by a go signal, to which the monkey has to answer
by releasing the lever and then coming back on the same target to be rewarded. Three different response times
can be used to assess the behavioral state of the monkey: the time from the go signal to the release of the
lever (reaction time), the time from the release of the lever to the target touch (movement time), or the sum of
these two times. At each trial, we try to find a relation between how much a spike train of an individual cell
differs from an ideal ‘first reward spike train’ (measured as the median or quadratic average between this spike
train and the ensemble of all other spike trains emitted during the presentation of the first reward), and the
behavioral response time.

following the first reward might be related to the behavior following this first reward. If the monkey was very
attentive in a trial, the neurons producing the shift could encode the shift more robustly, and the monkey could
be quicker to respond to the subsequent go signal and to touch the target (‘response time’).

The ensemble of spike trains produced when the monkey received the first reward should give a good
estimate of an activity able to produce a behavioral shift, because the monkey is very well trained and behaves
almost optimally. Outliers differing from these spike trains are likely to reflect trials in which the shift was not
produced ‘normally’.

The spike train metrics approach allows to quantify how much a spike train produced in a given first reward
trial differs from the other spike trains produced when the first reward is delivered. We computed either the
median or the small distances biased average of the ensemble of pairwise distances between a given spike train
and the other spike trains emitted during the delivery of the first reward. We were hoping to find a relation
between the distance of a spike train to the estimated ideal, prototypical ‘first reward response’, and the time
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Figure 7: Each dot represents one trial for one cell. The ordinate shows the reaction time following the (first)
reward of this trial. The x axis shows the distance of the spike train emitted in a [0, 1]s post reward window
to an estimated "stereotypical first reward spike train"” (see text), using the quadratic method, and a temporal
cost q=20/s. Data are pulled among cells with high and consistent information for discriminating first vs.
subsequent rewards. Three outliers for the reaction time, around 5-7 seconds, are not visible but were included
for the data analysis. The red line represents a robust linear fit (robustfit function of MATLAB) to all data points
(including the outliers). The slope of the fit was highly significant (p = 2.1881 1078).

between the go signal and the release of the lever, called ‘reaction time’ (which will be followed by the target
touch) at the next trial (Fig. 6, page 20). The very rare cases when first rewards were followed by an error
were not excluded, because it was also expected that on these trials the neurons activity would be abnormal.
However, we only selected first rewards after 0, 1 or 2 errors, because it is thought that there is no behavioral
shift after the fourth target touch, the good solution being inferred since the third error.

There is a correlation between distance of a first reward spike train to the prototypical ‘first reward
response’, and reaction time at the next trial. We first used the Spearman rank correlation coefficient to
test a possible non linear relationship between the distance of a spike train to the prototypical ‘first reward
response’, and the different behavioral times. We present here the results for the reaction times, but very
similar results were found for movement time or the sum of reaction and movement time, as presented in the
Appendix, Sec. A.6 page 50.

Cells that discriminate well between first and subsequent rewards show a positive correlation. We pulled
the data from all cells of the "high and consistent discrimination power" group. An example of the scatter of
reaction time and neural distance to the stereotypic "first reward spike train" is shown for a window of 1 s and
a cost of 20 /s, with the quadratic method (Fig. 7, page 21). The results for all costs and analyses windows is
shown in Fig. 8, page 22.
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Figure 8: Correlation between reaction time and distance of a spike train to the ‘ideal first reward response’, for high
discrimination ability cells. The first two rows use the quadratic classification, the last couple of rows use the median
classification. The correlation between distance to an evaluated ‘ideal first reward’ spike train and reaction time was
assessed by pooling all the data points from the cells that were selected as highly and consistently discriminative with the
information or with the % of correct, as indicated (same groups as in Fig. 4, page 18). The first column shows the result of
the post—hoc comparisons with Tukey’s honestly significant procedure on an Anova of Friedman comparing the different
costs (and removing the time effect). Stars indicate Victor and Purpura temporal costs q that were significantly different
from cost q=0 (spike count based distance). Please see the Appendix, Sec. A.3 page 46, for more details on Friedman
anova. The figures are the p—values of the Friedman test on all costs. The second column shows the evolution of the
correlation when distances are computed on spike trains of increasing lengths. The third column shows the evolution of
—log,o(p — value) for the correlation. Colors represent different costs as indicated (unit: /s).
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Observation of the second column of Fig. 8 page page 22 shows that the correlation between reaction time
and the distance at the reward time to an evaluated ‘ideal first—reward spike train’ (see Fig. 6, page 20) increases
with the length of the analysis window, following roughly the same evolution as the discriminability between
first and subsequent rewards, with a slight time—lag (compare with Fig. 4, page 18). The median method leads
to significantly positive correlation coefficient slightly quicker than the quadratic method, but both methods
lead to very similar maximal correlation coefficient. The results are robust to the precise cells selected, as they
are very similar for two sizes of selected groups of neurons (information vs. percentage of correct). It should
be noted that for cells selected by their information values, for the smaller analysis windows, the correlations
are rather slightly negative (while only reaching significance with the quadratic method).

To test for the effect of the cost, an anova of Friedman was used, with the analysis windows as a cofactor.
All methods showed a very significant effect (Fig. 8, page 22, inset in column 1). Post hoc comparisons with
Tukey’s honestly significant difference criterion showed that in all cases, the correlation with a spike count
based distance was smaller than the correlation with a distance taking moderately into account the temporal
structure of the spike train (costs 15 and 20 per s always correlate better than cost 0). Details about possible
limitations of Friedman anova are discussed in the Appendix, Sec. A.3, page 48.

Therefore, using this methodology, single cells, single trial activities were better related to behavior if the
temporal structure of the spike trains was taken into account.

The cells which discriminated less well between first and subsequent rewards are not, or little correlated
to reaction time when pulled. When the correlations were assessed by pulling all the ‘mildly encoding cells’,
correlations were only significant for the median method, for the 125 neurons with low and or inconsistent
information, and only for the [0, 0.15] s analysis window (best cost: q=40/s, c=0.0455, p=0.0249). Note that at
this same analysis window length, the correlation was, on the contrary, slightly negative for those cells which
had high information.

Thus, the correlation between first-reward activity and behavior was not trivially found in all cells of ACC.
However, we would like to stress that the low discriminating group is likely to be composed of subgroups, and
additional analyses show that some of these subgroups taken separately would be more correlated to the touch
time (see appendix, session A.7, page 54).

3.1.3 The correlation between the reaction times and neural activity at first reward is not (or not only)
a side effect of the influence of reward rank on reaction time

Previous studies ([31], their supplementary material; [29]) had shown an effect of the number of failures pre-
ceding the first correct on the reaction time of the monkey. Up to 2 failures, for monkey M, the reaction time
after the first correct increases with the number of failures (termed ‘rank of first correct’: 0 failures corresponds
to a rank of 0, etc). This has been interpreted as the fact that when the number of errors was high the monkey
was taking more time to recall the previous failures and choose the appropriate response, which was thus less
automatic. As shown in Table 14 page 55 in the appendix, we confirmed the correlation between the different
response times of the monkey and the rank of the first reward (when restricted to [0, 1 or 2]).

Although we tried to approximate an ‘ideal’ spike train produced during a ‘normal’ behavioral shift by
pulling the responses over all ranks in [0, 1, 2], if responses are more similar at a given rank as compared to
between rank, we could not rule out a possible influence of the rank on the distance of a spike train to this
prototype, as exemplified in the Appendix, Sec. A.8.2, page 55.
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Figure 9: Three oversimplified models for the relationships between ranks, response times and distance of a
spike train to the ‘first reward class’. Arrows represent putative causal links.

Three oversimplified models could account for these two kinds of correlation (see Fig. 9, page 24):

e The rank of the first correct trial influences the distance of this trial to the ‘first reward class’, and,
independently, the rank of the first reward has an influence on the response times of the animal (relying
on the activity of different neurons from those we studied) (Fig. 9 A).

e The rank of the first correct influences the distance of this trial to the ‘first-reward class’, which in turn
would be causally related to the responses times of the animal. All the influence of the distance on
time comes from the rank effect. Therefore, the activity would more likely reflect the integration of
information related to the position of the reward, rather than being generally involved in shifting from
one behavior to another (Fig. 9 B).

e The rank of the first correct and the deviation of the activity from an ‘ideal first reward’ response would
have separate and independent influences on the response times (Fig. 9 C).

In the first model, it is required that the correlation between ranks and distance to the prototypical first
reward response is stronger than the correlation between the distance and the response times. In the second
model, it is required that the correlation between ranks and distance is as great as the correlation between
distance and response time (when assuming similar level of noise between ranks and distance and between
distance and response time).

Therefore, we tested the significance between the difference of the correlation between ranks and distance
(for an analysis—window length [y and the temporal cost ¢y that were maximizing it) and the correlation between
distance and response times (at the same analysis window length [y and cost gg). The results show that at the
analysis window and cost at which the correlation between neural distance and spike train is maximized, there is
no significant correlation between the neural distance and the rank, and the correlation between neural distance
and response times was always very significantly higher than the correlation between ranks and distances. The
detailed p—values are presented in Table 15, page 57, in the appendix.
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Thus, when decoded in a way that maximizes the correlation with behavior, the neural responses were
little related to the rank of the first correct (situation closer to model C) in Fig. 15 page 57). However, at
some different costs and analyses window lengths, the neural response could correlate significantly with the
ranks (see the Appendix, Sec. A.8.3, page 56); which shows that the rank of the first correct has effectively an
influence on some aspects of the neural response, even though the measure of the distance of one spike train
to all "first reward spike trains" at all ranks should rather minimize the impact of this variable on the neural
response measure. Accordingly, when the maximal ranks vs. distance correlation was compared to the maximal
response times vs. distance correlations, the latter was still higher (which was significant or was a tendency; all
p—values for the permutation test <0.1).

Finally, we compared the correlations between neural distance and response time and between ranks and
response time (Table 16, page 57 of the appendix). The influences of ranks and neural distance were generally of
comparable strength, with the exception of the correlation with movement times, for the less stringent selection
of neurons (neurons selected with percentage of correct). In the latter case, the rank was a more related factor
than the neural response.

3.1.4 Summary of the results for the single units analysis

As a general conclusion, regardless of the methodology used, single units which discriminated well and con-
sistently between the first and subsequent rewards could be found. For these units, the discrimination was
better when the temporal structure of the response was —moderately— taken into account. The deviation of these
units’ activity from their usual response also correlated with the time the monkey took to act at the next trial, 6
seconds later. Additionally, it is always found that taking into account the temporal structure of the spike train
maximizes the link between their activity and the touch time. Finally, this correlation was largely independent
from the effect of the ranks on the response times.

An interesting point is that the activity of the ‘well-discriminating’ cells was not generally restricted to
the first reward (see the Appendix, Sec. A.9, page 58 for further details). In effect, an analysis correlating
the deviation of a ‘second reward spike train’ to an approximated ‘stereotypic second reward spike train’, and
reaction times at the third touch, gave also positive correlations. Moreover, the activity of these cells could
also discriminate rather well between the beginning of the first trial of a problem, when the monkey returns to
an exploration strategy, and the beginning of a trial in the exploitation phase. However, detailed results rather
suggests that the first reward time and, possibly, the behavioral switch to exploitation, is the most relevant factor
for the activity of at least some of these cells.

3.2 Correlates of the behavioral shift in the most informative neurons were robust to the su-
perposition of the response of a least informative neuron

We analyzed the activity of couples of simultaneously recorded cells in the anterior cingulate cortex. These
cells could come from two different electrodes of the array, or could have been recorded on a single electrode
and separated thanks to spike sorting. 122 couples of cells composed of 126 different single units could be
extracted from the data set of 145 single units (23 units were recorded alone).
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Quadratic method, information N =19 Common: N =17
Median method, information N =20
Quadratic method, % of correct N =39 Common: N = 35
Median method, % of correct N =48

Table 3: Number of couples selected for each classification method/ classification measures. All the couples
selected with information were also selected with the percentage of correct when keeping the classification

measure constant.

Median method Quadratic method
[0, 0.35] s [0, 0.6] s [0, 0.35] s [0,0.6] s
All counles median = 0.9904; | median = 0.8258; | median = 0.9346; | median = 0.8601;
P mean = 0.8097 mean = 0.7152 mean = 0.7989 mean = 0.7287
median = 0.9308; | median = 0.8222; | median = 0.9488; | median = 0.9201;
Best couples
mean = 0.8080 mean = 0.6886 mean = 0.7887 mean = 0.8270

Table 4: The median and mean absolute difference in information between two cells of a couple, normalized by
the information of the best encoding cell of the couple. Note that the mean is lower than the median, indicating
the presence of outliers that have information more equally distributed within the couple. Couples for which
both neuron had (after bias correction) zero information were discarded.

3.2.1 Discriminability between first and subsequent reward for couples of cells is slightly increased
compared to the ‘best’ single unit

We used the Aronov/Victor and Purpura method [4] to quantify how well couples of two units discriminated
between first and subsequent rewards, as a function of two parameters: the temporal precision ¢, and the neuron
identity cost k£ (see Methods, Sec. 2.3.2, page 9). Due to the increased computation time, we only considered
two different analysis window lengths: 0.35 s (when the single unit information was increasing, and when the
correlation between neural distance and responses time was already significantly positive); and 0.6 s (when the
single unit information was maximal).

Similarly to the single units analysis, we selected an ensemble of couples with high and consistent discrim-
ination power by using a k—means algorithm on the maximal discrimination measure (over all costs ¢ and both
analyses windows), and by additionally requiring that couples would have discrimination values above the 95th
percentile of the distribution for permuted data for both analyses windows. The number of selected couples is
shown in Table 3 page 26; again, the percentage of correct selected those couples selected by information, plus
other couples; and the median method and the quadratic method selected largely overlapping groups of cells.
The difference of proportion was significant between information and % of correct, but not between the two
methods (at a risk of 5%, tmcomptest of the MATLAB file exchange).

There was a small increase in discriminability for couples of cells when compared to the best cell. In
general, it was very rare that two well discriminating cells were recorded simultaneously. In effect, the per-
centage of highly encoding cells was roughly % ~ 21%, which gives a probability of less than 5 % to have
two very informative cells recorded in the same time if they were independent. For the 45 sessions analyzed,
the expected number of sessions is 2 or 3. Accordingly, the differences in information between two cells of a

couple were quite high (see Table 4, page 26; the difference in information is normalized by the information
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First reward Subsequent rewards

[0, 0.35] s [0, 0.6] s [0, 0.35] s [0,0.6] s

median = 0.5515; | median = 0.4722; | median = 0.3864; | median = 0.41806;

All couples mean = —0.0921 mean = —0.7495 mean = —0.9173 mean = —0.9070

Best couples selected
with information, for
quadratic method

median = 0.6400; | median = 0.7391; | median = 0.3811; | median = 0.4583;
mean = 0.1854 mean = 0.2688 mean = —3.2193 mean = —1.2578

Best couples selected
with information, for
median method

median = 0.6148; | median = 0.7161; | median = 0.3864; | median = 0.4410;
mean = 0.2094 mean = 0.2777 mean = —3.0284 mean = —1.1671

spike count most in formative neuron)—(spike count least in formative neuron)
(spike count most in formative neuron) ’

computed separately for the first reward and subsequent rewards, and among the whole population or groups

Table 5: Median and mean values for (

of well-discriminating cells.

for the best neuron of the couple).

In the same time, the less informative neurons were not silent as is shown in Table 5, page 27. We computed
(spike count most in formative neuron)—(spike count least in formative neuron)
(spike count most in formative neuron)
and the subsequent reward category; and we got median values around 0.5, indicating that the spike count of

separately for the first reward category

the least informative neuron was often on the order of half the spike count of the most informative neuron.
Moreover, the means were much lower than the median and often negative, indicating the presence of outliers
which discharged a lot without being informative.

Consequently, little informative neurons potentially have a strong impact on the multiunits distance, which
by construction (and at the contrary to what a neural network can do) weights the two neurons equally in the
decoding process. Therefore, it was interesting to ask whether in general more information could be gained by
taking into account two neurons, or if it would be more "optimal" for a decoder to ignore the cells that have
a low encoding. For this purpose, we computed the difference between the maximal information given by the
couple of cells and the maximal information the best cell could give, a measure that we called G (see Methods,
Sec. 2.4.2, page 14). Results are given in Table 6, page 28, and show that in the whole population, the gain
was small but significantly positive. Among the groups of ‘better encoding couples’, the effect was of similar
or higher magnitude, but it only reached significance for one analysis window, possibly because of the small
number of couples and thus the low power of the test. Also, the mean was always superior to the median,
indicating that outliers rather tended to be with high information gain.

We also tested a possible correlation between the imbalance in information content between the two cells
and the gain G for the couple. Although the correlation were often negative as expected; they rarely reached
significance (Table 7, page 28).

As a conclusion, even though there was very often a high imbalance between the discrimination ability of
the two cells, the global tendency was for a slight (on the order of a few percent) improvement in the information
when both cells were taken into account, as compared to the best cell considered independently.

Taking into account the temporal structure and weighting neural identity generally improved the infor-

mation. We were interested in knowing which temporal and identity parameters allowed the slight improve-
ment in information observed. Probably because the percentage of correct method was less selective (and also
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All couples

Median method Quadratic method
[0,0.35] s [0, 0.6] s [0, 0.35] s [0, 0.6] s
mean = 0.0215; | mean = 0.0231; | mean = 0.0271; | mean = 0.0290;

median = 0.01;
p=4.7459 107°

median = 0.0189;
p=1.871510"°

median = 0.0123;
p=1.172010"8

median = 0.0207;
p=5.481710"6

Best couples

mean = 0.0517;
median = 0.0518;
p=0.2632

mean = 0.0411;
median = 0.0255;
p=0.0414

mean = 0.0613;
median = 0.0486;
p =0.0192

mean = 0.0546;
median = 0.0432;
p = 0.0636

Table 6: The median and mean information gain G as well as the p—value for a two sided, non parametric sign
test (Hy: the median is null).

Median method Quadratic method
[0, 0.35] s [0,0.6] s [0, 0.35] s [0, 0.6] s
All couples c = —0.1199; c = —0.0397; c = —0.1682; c = —0.0364;
p=0.2101 p = 0.6698 p = 0.0686 p =0.6918
Best couples c = 0.0202; c = —0.2392; c = —0.6011; c = 0.0088;
p = 0.9326 p = 0.3098 p = 0.0065 p=0.9741

Table 7: Spearman correlation coefficient between G and information imbalance and its p—value.

perhaps less sensitive), it resulted in less differences for the discrimination power between the interesting vari-

ables ¢ and k, and we focus here on the most stringent selection of cells: the selection relative to information
values. The results for the information selected cells are presented in Fig. 10, page 29 for the quadratic method,

and Fig. 11 page 30 for the median method.

Qualitatively, it can be seen that the mean information among the best couples is maximized for a temporal
cost of 15-20, and for a neural identity cost superior to 1. To test for the significance of the difference between
costs, the medians of distribution of information values were compared between (gqpt, kopt) that maximized
the median information and other (g, k), individually for each analysis window. The p—value of the ranksum
test was plotted as a function of k and q. Five interesting values are summarized in Table 22, page 64 of the

appendix:

e The comparison between (gopt, kopt) and (¢ = 0,k = 0), which allows to see if mere pooling was
deleterious when compared to taking into account the temporal structure and neurons identities

e The comparison between (qopt, kopt) and (¢ = gopt, kK = 0), which allows to test whether the improve-
ment at optimal cost is mainly due to the effect of temporal structure

e The comparison between (qopt, kopt) and (¢ = 0,k = kopt), which allows to test whether the improve-
ment at optimal cost is mainly due to the effect of neural identity

e The comparison between (qopt, kopt) and (¢ = Gopt at k=0, k = 0), which allows to test whether a tempo-
ral cost can be found at which neural identity does not matter (significantly)

e The comparison between (Gopt, kopt) and (¢ = 0,k = Kopt at q—0), Which allows to test whether an
identity cost can be found at which temporal precision does not matter (significantly).
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Figure 10: (A) and (C) Information with quadratic method: mean + standard error; (B) and (D) p—value for the
comparison of the median between the optimal distribution and the distribution of information at the indicated

cost. For clarity, two flat surfaces at p=0.05 and p=0.01 are drawn.; (A) and (B): Analysis window of [0, 0.35]
s; (C) and (D): Analysis window of [0, 0.6] s.

For the longer analysis window, all of these tests were significant, indicating an importance of both neural
identity and temporal structure for decoding. At the smaller analysis window, even though the results are
qualitatively very similar, some tests failed to reach significance.

A more detailed analysis was conducted to better understand the influence of the cost k. At best temporal
cost ¢, its major effect was to improve the correct classification of the spike trains of the "subsequent reward"
group. At a temporal cost 0, it had a similar positive effect on the classification of "first reward spike train" and

subsequent reward spike train. More detailed results and discussion are presented in the Appendix, Sec. A.10.2,
page 64.

3.2.2 Correlation between response times and neural distance were unchanged between ‘best’ couples
of cells and ‘best’ single units
Similarly to the single unit analysis, we computed the correlation between the distance of a multi—units spike

train to a ‘reward—stereotypic’ multi—units spike train and response times at the following touch. Results were
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Figure 11: (A) and (C) Information with median method: mean + standard error; (B) and (D) p—value for the
comparison of the median between the optimal distribution and the distribution of information at the indicated
cost. For clarity, two flat surfaces at p=0.05 and p=0.01 are drawn.; (A) and (B): Analysis window of [0, 0.35]
s; (C) and (D): Analysis window of [0, 0.6] s.

globally consistent for reaction times, movement times and the sum of them; we report here mainly results for
reaction times. A more detailed analysis, including remarks on small differences found with movement times,
is detailed in the Appendix, Sec. A.6, page 50.

There was no evidence for a change in correlation between activity and behavior for couples of cells as
compared to individual cells. As the correlation could not be assessed on individual units (because of a lack

of statistical power), it is more difficult to compare it between couple of cells vs. single units. Two comparisons
were however tempted:

e We compared the correlation among the N best single units selected by a k—-means algorithm on informa-
tion values, plus significance at both analyses window lengths (0.35 and 0.6 s), with the N best couples
extracted from the N1 (N1 > ) best couples selected the same way as the single units. Note that be-
cause all the single units were not recorded together, most of the time the best single units were associated
with other, less well discriminating cells in the couples (method 1 of Table 8, page 31).
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[0, 0.35]s (RT, MT, sum)

[0, 0.6]s (RT, MT, sum)

p value: (0.72, 0.95,0.74)

singles: (0.27,0.26,0.34); | singles: (0.30,0.30,0.37);
Method 1 Quadratic method (/N = 13) couples: (0.28, 0.19,0.28); couples: (0.36, 0.24,0.36);
p value: (0.92, 0.32,0.44) p value: (0.43,0.43,0.84)
singles: (0.29,0.29,0.34); | singles: (0.31,0.32,0.36);
Median method (N = 12) couples: (0.31, 0.21,0.31); couples: (0.29, 0.25,0.31);
p value: (0.66, 0.30,0.66) p value: (0.87,0.36,0.50)
singles: (0.26,0.13,0.25); | singles: (0.37,0.28,0.37);
Method 2 Quadratic method (N = 19) couples: (0.23, 0.12,0.23); couples: (0.29, 0.22,0.30);

p value: (0.17,0.48,0.19)

Median method (N = 20)

singles: (0.29,0.19,0.29);
couples: (0.23, 0.18,0.23);
p value: (0.39, 0.88,0.29)

singles: (0.38,0.28,0.39);
couples: (0.32, 0.22,0.32);
p value: (0.28,0.37,0.23)

Table 8: Comparison of the maximal correlations between response times and neural distances to a "stereotypic
first reward", between best couples and best single units, using the two methods as described in the text.

e We compared the correlation with the N1 best couples and the correlation obtained when taking for each
couple the cell with the highest information (method 2 of Table 8, page 31)

In either case, no significant differences were found (even though with the second method correlation values
were always lower for the couple as compared to the best single units). The results are summarized in Table 8,
page 31.

The correlation between neural activity and behavior increases if temporal structure is taken into ac-
count. We compared the correlation at optimal costs (qopt, kopt) with the correlation at other costs. Here
again, for the reaction times and at the longer analysis window, the correlation at (gopt, kopt) always signifi-
cantly exceeded ( all p values<0.05) the correlation at (¢ = 0, k), for any k (see Fig. 12 page 32 for the quadratic
method and Fig. 13, page 33 for the median method). Additionally, there was little evidence for a significant
decrease in the correlation when temporal precision increased; but the decrease for very high temporal costs
q was also very small for individual analyses windows with the single units analysis. For the sum (movement
time+reaction time), the results were very close though sometimes the significance became a tendency. For
the movement times, the differences were far less pronounced and reduced to the geometric method (see the
Appendix, Sec. A.6, page 50).

Neural identity was less important for our measure of correlation between neural activity and behavior.
At optimal temporal costs, no significant effect of taking into account neural identity could be found. Although
seemingly at odds with the results for the information, a more detailed study of the effect of neural identity
at optimal temporal cost (see Appendix, Sec. A.10.2, page 64) reveals that it increased information mostly by
improving the classification of spike trains in the ‘second, third and fourth rewards’ category, but not of spike
train in ‘first reward’ category. In contrast, the behavioral correlation analysis only relies on the distance of
first reward spike train to the ‘first reward category’. Therefore, the firing of the low informative cell was not
deleterious to assess the deviation of the activity of the high informative cell relative to a ‘stereotypical’ first
reward spike train, even though the firing of the low informative cells was little related to behavior (shown in
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Figure 12: Correlation between neural distance and reaction times, for the best couples of cells, with the
quadratic method (N = 19 couples); as a function of the temporal cost q and the neural identity cost k. First
row: analysis window of|0, 0.35] s; second row: analysis window of [0,0.6] s. First column: p value for the
comparison of the correlation with the correlation at optimal costs. The value of 1 indicate the position of the
optimal costs; and a black flat plane at p=0.05 is drawn. Second column: value of the Spearman correlation
coefficient. Third column: —log,q(pvalue) for a test of significance of the correlation coefficient (Hy: the
correlation coefficient is null); a black flat plane at p=0.05 is drawn.

Table 9, page 32). Because of this low correlation for least discriminating cells, taking each cell of the couples
independently and then pulling them also generally lead to less correlation (see Table 10, page 33).

[0, 0.35]s (RT, MT, sum) [0, 0.6]s (RT, MT, sum)

singles: (0.06,0.03,0.06); singles: (0.03,0.05,0.04);
Quadratic method (/N = 19) couples: (0.23, 0.12,0.23); couples: (0.29, 0.22,0.30);

p value:(0.008,0.18,0.009) p value:(< 0.0001,0.01, < 0.0001)
singles: (0.06,0.04,0.06); | singles: (0.12,0.16,0.14);

Median method (N = 20) couples: (0.31, 0.21,0.31); couples: (0.29, 0.25,0.31);

p value: (0.01, 0.09,0.01) p value: (0.002,0.33,0.007)

Table 9: Comparison of the maximal correlations between response times and neural distances to a "stereotypic
first reward", between couples of cells and the least discriminating cell of each couple. In each entry, the first
two lines report the value of the Spearman correlation coefficient, and the third line report the p—value for the
permutation test comparing single and multi—units.
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Figure 13: Correlation between neural distance and reaction times, for the best couples of cells, with the
median method (N = 20 couples); as a function of the temporal cost q and the neural identity cost k. First
row: analysis window of [0,0.35] s, second row: analysis window of [0,0.6] s. First column: p value for the
comparison of the correlation with the correlation at optimal costs. The value of 1 indicate the position of the
optimal costs, and a black flat plane at p=0.05 is drawn. Second column: value of the Spearman correlation
coefficient. Third column: —log,q(pvalue) for a test of significance of the correlation coefficient (Hy: the
correlation coefficient is null); a black flat plane at p=0.05 is drawn.

[0, 0.35]s (RT, MT, sum)

[0, 0.6]s (RT, MT, sum)

Quadratic method (N = 19)

singles: (0.13,0.07,0.13);
couples: (0.23, 0.12,0.23);
p value: (0.06, 0.41,0.07)

singles: (0.14,0.13,0.15);
couples: (0.29, 0.22,0.30);
p value: (0.01,0.10,0.01)

Median method (N = 20)

singles: (0.14,0.11,0.14);
couples: (0.31, 0.21,0.31);
p value: (0.08, 0.20,0.13)

singles: (0.16,0.16,0.17);
couples: (0.29, 0.25,0.31);
p value: (0.004,0.26,0.01)

Table 10: Comparison of the maximal correlations between response times and neural distances to a "stereo-
typic first reward", between couples of cells and all the cells taken independently and pulled. In each entry, the
first two lines report the value of the Spearman correlation coefficient, and the third line report the p—value for
the permutation test comparing single and multi—units.
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4 Discussion

Overall, we showed that the temporal structure of spike trains in ACC contains significant information about
behavioral shifts. This is in agreement with, and extends previous spike-count related observations by Quilodran
et al. (2008) [31], and argue in general for the existence of two modes of action control in exploration and
exploitation. Moreover, this analysis also brings more details about how ACC neurons activity may participate
in the production of the behavioral shift between exploration and exploitation in this task.

4.1 Behavioral shift markers better correlate with ACC single units activity when temporal
structure is taken into account

4.1.1 Single units activity discriminate better between first and subsequent reward when temporal
structure of the spike train is taken into account

As a first marker of the behavioral shift between exploitation and exploration, we used the discriminability of
single unit spike trains between two situations: the first reward (trials where deduction was possible excluded)
vs. the subsequent rewards. The rationale for this was that the external event that occur is the same between
the two groups: the monkey receives a reward, while the two groups differ by the behavioral strategy that the
monkey is deemed to use. In the first group, there is evidence that the monkey shifts between a strategy of
exploration to a strategy of exploitation. In the second group, the monkey pursues its exploitation strategy. A
neural activity differentiating between the two groups is thus possibly linked to the behavioral switch.

The results show that when using the Victor and Pupura spike train metrics, single units activity discrimi-
nates better between the two situations when temporal structure is taken into account enough (Fig. 4, page 18,
costs 5/10 vs. cost 0), an effect that was more pronounced for the units which discriminate better between first
and subsequent reward (Fig. 4 vs. 5, page 19). This in turn suggests that to capture the activity deemed to
produce the behavioral shift, a neural decoder toward which ACC single units would project would be more
efficient if it was sensitive to spike times.

However, this approach suffers from multiple limits. The most obvious one is that pooling the activity of
many cells is very probably sufficient to discriminate perfectly between the two situations. Another limit is that
the activity allowing the discrimination between the two situations is not necessarily related to the behavioral
shift. It could for instance reflect (or also reflect) differences in reward expectation, or ‘surprise’ [15, 37,
11]. Finally, the two situations occur at different moments of the task. Therefore, they cannot be simply
discriminated by a neural decoder, and this discrimination is probably not functionnal, it can only be a cue that
the cell studied could be related to the behavioral shift.

Consequently, we complemented the analysis with an other approach based on the correlation between
single units activity and behavior.

4.1.2 Single units first reward activity is more correlated to behavioral response latency when the tem-
poral structure of spike trains is taken into account

If the single units that are discriminating well between first and subsequent reward are causally implied in the
behavioral switch, then it is expected that their activity correlates with the monkey’s behavior when the switch
is realized. Previous studies have shown that the response times of the animal (reaction time and movement
time) are modulated between exploration and exploitation, being higher for our monkey during exploitation
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than during exploration, an observation which can be interpreted as higher control during exploitation. It was
therefore hypothesized that:

e There is variability in how well the monkey realizes its behavioral switch, which is due to the fact that
the neurons that cause the behavioral switch may discharge in an efficient way in some trial and in a least
efficient way in some other trials

e When the monkey realizes less well its behavioral switch after receiving the first reward, it is slower to
touch the target at the next trial (i.e. it is slower to decide of the good strategy or, in the rare cases when
it makes an error, it hesitates during a very long time)

e Because most of the trials are successful, the efficient switch—producing activity can be approximated
by the ensemble of spike trains produced in all first-reward trials (excluding trials for which the solution
could be inferred earlier). Consequently, a measure of how much a spike train deviates from the "efficient
switch producing" spike train can be given by the measure of the global distance of this spike train to all
other spike trains produced during the presentation of the first reward.

Following these hypotheses and assuming that the single units which discriminate well between first and sub-
sequent reward are causally involved in the behavioral shift, a positive correlation between the global distance
of a first reward spike train to all other first reward spike trains and the response times at the next touch was
expected. It was indeed the case (Fig. 8, page 22). This suggests that the neural activity of these cells is causally
related to the behavioral switch. Moreover, the correlation was significantly higher and more consistent in time
for reasonably high temporal costs as compared to spike count based classification (¢ = 0). This result is con-
sistent with the hypothesis that the neural network toward which these ACC neurons might project, and which
would produce the adapted behavioral output, is moderately sensitive to the spike times of ACC neurons.

The correlation between the subset of cells activity at the first reward, and subsequent trial response times
is not likely to reflect a purely motor involvement of these neurons, for three main reasons:

e This activity occurs ~ 6 s before the movement
e The activity discriminates between first and subsequent rewards

e The correlation between the distance of a second reward spike train to all other second reward spike train,
and reaction times at the third touch tended to be smaller (see the Appendix, Sec. A.9.1, page 58).

Another interesting observation is that the rank of the first reward trial is also strongly correlated with the
following behavioral response times (see the first figure of [31], as well as Table 15, page 57) which more
likely reflects an influence of (updated) reward expectancy.

This could at first sight suggest that the correlation between neural distances and response times was only
a reflection of a stronger, ‘more causal’ relationship between rank of the first reward and subsequent response
times (models A) and B) in Fig. 9, page 24). In that case, single units ACC activity would be rather related to
the integration of previous information about the possible rewarded target (thanks to the outcome of errors) than
to a ‘behavioral switch’ per se, which should be independent of reward rank. Such a correlate would be closer
to the previously observed ‘reward prediction error’, ‘reward proximity’ and/or ‘surprise’ effects previously
observed [37, 15, 11].
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However, at the analyses windows and costs which maximize the correlation between neural distance and
behavior, the neural distance was not significantly correlated with reward rank (Table 15, page 57). More-
over, for the reaction time and the sum reaction time plus movement time, the correlation between rank and
behavioral times was of similar strength to the correlation between neural distance and behavioral times (Ta-
ble 16, page 57). This suggests that in this task, there is a way to "read" single units activity which reflects
more strongly the behavioral switch per se rather than some of its correlates. This effect, although expected
given that the ‘first reward’ category mixes the different ranks, was not however a trivial consequence of the
methodology we used (see the Appendix, Sec. 21, page 56).

The fact that in other tasks where the behavioral switch is less clear, ACC single units activity has been
mainly globally related to ‘reward expectation’ supports the hypothesis that ACC activity can be task-dependent,
an effect already observed by Haydn and collaborators [11] when they recorded from the same monkeys, in the
same sites, during different tasks.

Moreover, movement times variations seemed more linked to ranks than to a ‘general switch related neural
distance’ (see Table 16, page 57). This is not surprising when considering that as the monkey accumulates error
trials, it becomes less uncertain about the direction which will be rewarded, and thus the reaching movement
to do, whereas the first removal of the monkey’s hand from the lever touch (which is measured by the reaction
time) is the same for all directions.

Interestingly, the movement time is also the one which was maximized for a smaller temporal cost in the
single units analysis (see Fig. 19, page 52 of the appendix), for which the differences between costs were less
prominent in the multi—units analysis (see Fig. 20, page 53 of the appendix), and for which less differences in
correlations were observed between well discriminating and mildly discriminating units (Sec. A.7.1 page 54 of
the appendix). This suggests a differential influence of ACC activity on the reaction times and on the movement
times.

Another caveat with the movement times is that it only relies on times measured by the tactile touch screen,
which is rather imprecise (sampling frequency of 50 Hz, which gives a maximal precision of 20 ms), whereas
the onset of reaction time and of (reaction + movement) times is recorded as the apparition of a visual signal,
which is more precise.

4.1.3 Agreement and discrepancies between neural discriminability and behavioral correlation analysis

Discriminability between first and subsequent rewards and correlation with response times are two complemen-
tary methods, because neither of them, nor even the conjunction of both, is sufficient to assess the implication
of a single unit in the behavioral shift. In effect, a neuron activity could correlate well with the response times
if it was motor—related, for instance. Notably, moderate correlation values were observed in subsets of very
low discriminating cells (see Appendix, Sec. A.7, page 54), which activity is not likely to be linked with the
behavioral switch.

Moreover, the discriminability between first and subsequent rewards can occur because of differences in
reward expectancy between the two situations, for instance, which could occur before the switch—related activ-
ity. This might explain why the discriminability is already significant for small analyses windows (see Fig. 4
page 18, analyses windows > 0.05s and analyses windows > 0.1s for median and quadratic methods respec-
tively), whereas the correlation is non significant or even slightly negative at similar analyses windows. This
suggests that the latency of the activity which might cause the behavioral switch is closer to the latency at which
the correlation becomes positive (0.2 to 0.3 s post first reward, see Fig. 8 page 22). Furthermore, it is possible
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that for early analyses windows, a large neural distance reflects an advanced response relative to the more com-
mon case, rather than a ‘non optimal spike train’ (as it seems to be the case for longer analyses windows), which
in turn could cause a smaller reaction time and explain the negative correlations observed (see the Appendix,
Sec. A.5, page 49, for further argumentation).

The two analyses globally agree on the fact that spike count based metrics performs less well than metrics
taking into account spike timing. However, the correlation analysis tended to find higher best costs than the
discrimination analysis. This might be because increasing further the importance of spike timing tended to
increase more the distance intra ‘first-reward category’ than the distance inter—category. However, again, the
discrimination between the two categories cannot really occur at the moment of the shift, and therefore it is
possible that less optimal costs for discrimination are actually used when the shift-related activity is read out.

Thus, globally, the single units analysis suggest that spike timing has an importance in the ‘encoding’
of the behavioral shift by ACC single units, although the determination of the exact temporal precision is
probably impossible because different methods (for instance, different metrics; e g [38, 34]) are likely to give
slightly different results, and because of technical limitations to measure accurately the responses times and
the reward time. Finally, it is also possible that the internal reference which putatively allows neurons to be
sensitive to spike timing does not exactly corresponds to the reward time, and this would probably lead to an
underestimation of the temporal precision in the present studies. Other temporal references, for example based
on the phase of spikes relative to the theta or the gamma rhythms rhythms in local field potentials, remain to be
tested.

More speculatively, it can be noted that this relative importance of spike timing is compatible with the
hypothesis that a "downstream" decoding neuron would be sensitive to the temporal structure of the ‘well
discriminating cell’, for example because it would receive as an other input a spike train corresponding to the
‘stereotypic, ideal’ first reward spike train of this well discriminating cell. This (oversimplified) framework
is close to the concept of cortical neurons as ‘coincidence detectors’ [18]. However, in our case, the relevant
temporal precision of the spike trains is probably very rough. ‘Summation’ of depolarizations between the
ideal pattern and the ‘best neuron’ spike train would thus need a smoothing mechanism, for instance a rather
high membrane time constant in the decoding neuron, adapted to the temporal precision of its input. This
hypothesis is made more explicitly with the Van Rossum [38] distance (which uses an exponential, ‘synaptic—
like’ kernel to convolve two spike trains to be compared, before taking the distance as the difference between
the two continuous functions obtained), as well as with the SRM distance [7] (which computes the distance as
the difference between the spiking probability functions of a Spike Response Model ‘downstream’ decoding
neuron when it receives one vs. the other spike train).

4.2 Correlates of the behavioral switch encoded by the best single unit activity are robust to
the superposition of the firing of a less ‘switch—correlated’ simultaneously recorded cell

In general, due to the low proportion of well-encoding cells, there was a very high unbalance between the
discriminatory power of two simultaneously recorded cells. Consequently, the recording did not allow to see
reliably what would happen when the activities of two cells of comparable (and rather high) discriminatory
power would be considered jointly, because pooling the activity of two cells recorded independently neglects
the presence of noise correlations, which may either result in an overestimation (because the noise of the two
cells would vanish by averaging when considered independent) or an underestimation (if the joint deviation of
the cells’ activities from their mean activity is informative about the stimulus) of the gain of information when
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the two cells are considered jointly [20].

In an attempt to see if the ‘worst cell’ activity (which is non zero, see Table 5 page 27) would blur the ‘best
cell’ activity, or if on the contrary the activity of the two cells would positively combine, we used the Aronov
multiunits metrics to compute the informative power of couples of simultaneously recorded cells, as a function
of the importance of temporal precision (cost ¢) and of the importance of knowing which cell fired which spike
(cost k).

This method weights both cells equally. Therefore, if a decrease in information is observed for the couple as
compared to the best cell, then it would be more optimal for a downstream decoded to ignore (i.e. to decrease
the synaptic weight of) the worst cell to discriminate between first and subsequent reward. If no difference
between the couple activity and the best cell activity is found, then it is equally good for a downstream neural
decoder to ignore one cell or to take both cells into account; it suggests that the ‘best neuron’ activity is robust
to the firing of the least discriminating neuron, (for example because it does not fire at the same time as the ‘best
cell’, or because weighting neural identity and implicitly assuming a divergence between the projection of the
two cells on two independent decoders is sufficient to conserve the information, due to the fact that the worst
cell does not indicate the opposite choice to the best cell). Finally, if a gain is found for a couple of cells as
compared to a single cell, then it is either more optimal to have the two cells converging toward a same "decoder
neuron" (case when k,,;=0), or to have two independent neural decoder, each one decoding the input from only
one neuron, and indicating to which extent its input neuron indicates the presence of one of the situations. The
activity of the two ‘decoders’ (case kop: ~ 2) would be combined afterwards, for instance by convergence to a
third neuron. These different (oversimplified) cases are presented in Fig. 14, page 39.

For the information, the results show there was globally a very slight but significant increase in the discrim-
inability between first and subsequent reward in the couple compared to the best cell considered alone (even
though the gain might be either positive or negative in an individual couple). Moreover, in the best couples, the
couple information increased when temporal precision and neural identity were taken into account (see Fig. 10,
page 29 and 11, page 30).

However, at the optimal temporal cost, the effect of taking into account neural identity was mostly to
improve the correct classification of spike trains belonging to the ‘2nd, 3rd and 4rth rewards’ category. Please
refer to appendix A.10.2, page 64 for further discussion about possible reasons why the effect was most
sensitive for this category.

For the first reward category, the results thus suggest rather a robustness of the firing of the best informative
neurons relatively to the superposition of spikes from the least informative neuron at optimal temporal cost.
This was indeed found in the correlation analysis, which only relies on the ‘first reward category’ spike train
(see Fig. 12, page 32 and 13, page 32). In effect, the correlation with behavior relying on couples’ activity
was found to be statistically equivalent to the correlation relying on the ‘best single units’ activity (Table 8,
page 31), whatever the neural identity cost k, provided that temporal structure was taken into account, and even
though the ‘worst cells’ activity considered separately was little correlated to behavior (Table 9, page 32).

Much more speculatively, this robustness also suggests that in a ‘(rough) temporal pattern matching’ frame-
work, in which the neuron’s activity are ‘decoded’ by coincidence detection of the activity of one cell with a
‘stereotypical’, ‘optimal’ first reward spike train, ‘bad cells’ spikes would rarely coincide with this ‘stereotyp-
ical’ spike train. If a spike time dependent plasticity mechanism is added, the synaptic weight from the ‘bad
cell’ to the neural decoder may be expected to decrease. It would thus be interesting to investigate further this
question thanks to simulations and modeling.
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Figure 14: Three oversimplified ‘optimal’ decoding hypotheses compatible with the three different results of the
couples of cells analysis, at the best temporal cost q (which is > 0, suggesting a moderate importance of spike
timing). A) The best information for the couple is smaller than the best information for the best cell. B) The best
information for the couple is equivalent to the best information for the best single cell. C) The best information
for the couple is superior to the best information for the best single cell. ‘Coincidence detection’ is here taken
in a very large sense, and does not imply ms matching, but rather temporally approximate coincidence of
input spikes which still sum up because of a post—synaptic membrane time constant compatible with the timing
accuracy of the pre—synaptic spikes.

Of course, these results do not generalize easily to higher numbers of cells, even though this question is
certainly relevant because neurons usually receive a great number of inputs [1]. This question needs to be
investigated further. It is possible that a mere pooling of spike count from a great number of cells would finally
correlate with behavior. Another possibility is that activities from a rather small number of very informative
cells, possibly situated in distant areas [13] and thus less correlated, would be ‘decoded more optimally’, using
the temporal structure of the spike trains and a ‘coincidence detection like’ mechanism. This is not assuming,
of course, that the other, less informative cells are useless, because they could have an important contribution in
the network’s dynamic which is responsible for the activity of well encoding cells, and because less informative
cells might be involved in other task—related mechanisms, and/or in other tasks. The idea that all neurons of
an area might not be used in a given task was already pointed out by Purushotaman and colleagues [30], who
found that only a subset of MT neurons correlated with the behavior on a trial by trial basis.
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5 Conclusion

Converging evidence from different studies, using different animals and different tasks, points toward a role of
ACC in performance monitoring and behavioral strategy management. The study of Quilodran et al. (2008)
showed that in an exploration-exploration paradigm, some neurons’ firing rate was differentially modulated
between the first reward, when the monkey switches from exploration to exploitation, and the subsequent
rewards, when the monkey pursues its exploitation policy. The work presented in this report extends Quilodran
et al.’s observations by showing that the activity of a subset of ACC single units discriminate well (up to 90 %
correct) between first and subsequent reward. In addition, deviation of spike trains from their estimated ‘ideal
first reward spike train’ correlates positively with the following target touch response time. This reinforces the
hypothesis that ACC neurons are involved in strategy switch at first reward.

Importantly, we used a method that allowed us to vary the spike—timing sensitivity of a putative ‘down-
stream’ neural network. We suggest that a properly tuned neural decoder (i.e. capable of best exploiting the
temporal structure of ACC spike trains) can optimise discrimination ability and mediate the activity/behavior
correlation of single-unit-single-trial processes.

Finally, analysis of simultaneously recorded pairs of ACC units showed that both the discrimination and the
correlation abilities of ‘best cells’ were not impaired by the interfering action of least discriminative cells. In
future investigations, we will adopt a modeling approach to test whether or not this robustness property coupled
with plasticity mechanisms could shape the dynamics of a downstream neural network toward neglecting least
informative afferents, and/or would combine activity from many highly informative neurons.
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A Appendix

A.1 Properties of the mutual information between true and reconstructed classes

A.1.1 For big numbers of trials, under the hypothesis of chance clustering, I(T,R) is 0, regardless of the
differences in the number of trials between categories

To verify that the information measure behaves correctly in our case where the number of trials differs between
the classes, a purely theoretical approach can be used. It is sufficient to remark that :

I(T, R) = H(true categories) — (H (true categories/reconstructed categories)), .constructed categories
(10)
Where H is Shannon’s entropy, and <> denotes averaging. By definition, if true and reconstructed cate-

gories are independent,
H (true categories/reconstructed categories) = H (true categories) (11)

and hence I(T,R)=0.

To see how this occurs practically, with Romain Brasselet, we derived the value of the information in the
case when there are 2 categories, the first one with NV trials (V] very big), and the second one with N5 trials (/N
very big), under the null hypothesis that the distances are uniformly distributed within and between categories,
i e when there is no segregation of the two categories by the neural responses.

For the median classification, for any spike train s, the median of the distances between s and the spike trains
of category 1 should be the same as the median of the distances between s and the spike trains of category 2.
Therefore, the asymptotic values of the confusion matrix are given by :

[Nl Nl]
2 2
Ny N
2 2
Straightforward algebra shows that I(T,R) is null in this case.

For the quadratic classification, let us consider a further approximation, by which the quadratic classification
reduces to the classification in the class containing the closer neighbor. Then, the probability to be classified in

category one will tend toward i.e. toward the probability of being close to a spike belonging to category

Ni+Nz +N ’
1 by chance, whereas the probability to be classified in category 2 tend toward

A + *%, - Therefore, the expected

number of spikes belonging to category x and classified into category y is N, Hence, the asymptotic

Ni+N2 +N
values of the confusion matrix are given by :

Ny
M N1+N2 M N1+N2

N
N2 N1+N2 N2 N1+N2

Straightforward though somewhat tedious algebra also leads to I(T,R)=0.
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A.1.2 The maximum value of I(T,R) computed on finite samples depends on the repartition of the trials
between categories

Let us take the case when we were able to perfectly classify the spike trains. We have :
H (true categories/reconstructed categories) = 0 (12)

Therefore,
Iz (T, R) = H(true categories) (13)

A very famous general property of Shannon’s entropy is that it peaks for uniform distribution. Therefore,
Imaz peaks for the following confusion matrix :
N
7y
0 3

where N is a positive natural integer. The larger the imbalance of the number of trials between categories
is, the smaller [, is. Here are three numerical examples :

7.5 0
0 575

I =1n(2) ~0.6931

45 0
0 70

1 ~0.6693

25 0
0 90
I ~0.5236

A.2 Additional considerations about the bootstrapping method
A.2.1 Justification of the use of a bootstrapping method to evaluate the bias in information measure

Treves and Panzeri [27] have established an analytical formula for the bias term as a function of the number
of trials, when the information between stimuli and responses is computed thanks to the "direct method". This
consists in dividing each trial by a number of bins Ny, s, and assigning to each bin a discretized neural response,
for example spike count. In this case in which the responses can be considered as independent between bins,
the information is the sum of the informations between the probability distribution of the spike count in one
bin and the probability distribution of the stimuli. Our situation is equivalent to having only one response bin
with Neategories POssible neural responses (trial classified as belonging to category one, or trial classified as
belonging to category two), and two "stimuli" or situations (eg : first reward vs subsequent rewards). In these
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conditions, and with the assumption that if an infinite number of trials was available no cell would perfectly
(or, equivalently, not at all) classify one stimulus (no entry of the confusion matrix would be zero, which is
the parallel of non zero p(s, response 1) in [27], page 93, beginning of the page), then the shuffled information
provides an accurate estimate of the bias. Finally, even if the last assumption was not verified, as argued in the
main text, the shuffling procedure would lead to an overestimation of the bias on the order of m, ie
for most sessions less than a few percent of the information of the very informative cells/couples, which seems
a reasonable inaccuracy.

A.2.2 Evaluation of the significance and of the bias thanks to a bootstrapping method

Single units analysis We evaluated the significance of an information or of a percentage of correct value using
a Monte Carlo method to sample the values expected by chance, when the neural responses do not discriminate
at all between the categories. To do so, for each cell and each analysis window, we built 1000 surrogate data sets,
each of which corresponding to a random permutation of the spike trains, mixing the two categories. The value
of the information or of the percentage of correct was computed, and the data was considered as significantly
different from chance when its value was higher than the 50 highest values (0.05*%1000). However, this test is
only accurate if 1000 values allow a good estimate of the distribution. The total number of permutations is,
indeed, much higher : on the order of Ny,!, where Vi, is the total number of trials, typically 100/150. The
following section tries to argue that 1000 is reasonable.

To try to assess the convergence of the distribution of the permuted data information, we increased the size
of the number of permuted data sets from zero to 1000, and for each number of permuted data sets we computed
the mean information (or percentage of correct) as well as the value which would be used as a threshold for
significance at 5 % (the 0.95*number of permuted data highest value). We did this procedure a hundred times,
and represented the mean +/- 2 standard deviations (among these 100 repetitions) of the mean and the threshold
values as a function of the number of permutations. We want to verify that with 1000 permutations, we have
an accurate estimation of the mean, which will be used as a measure of the bias, and of the threshold value. An
example is shown in figure 15 page 44, for a cell in a window covering the 0.6 s after the reward time, and with
two categories corresponding to a)first reward at a rank 0, 1 or 2 ; b) second, third or fourth reward.

As expected, the mean information and the 95th percentile tend to be badly estimated for samples less than
500 permutations, as indicated by a high variance of the estimations. This was probably due to the fact that
the distribution of information in permuted data sets has a very long tail (not shown). For higher numbers of
permutations, the variance of the estimations saturates, while being non zero, probably because the confusion
matrix is made of discrete numbers, and so the information measure is also discrete.

It was verified visually that, for some other cells, the values of the mean information and of the 95th
percentile did not vary too much between 600 and 1000 permutations.

Additionally, we noted that the distribution of percentage of correct may not be exactly symmetric and may
be slightly biased (here, for the median classification, the median is 0.4986, significantly different from 0.5 :
signtest, p = 1.022210719). This is probably due to the fact that clusters of small distances spike trains can
emerge even with permuted data, for example because of the unbalanced number of trials between classes.

Multi—units analysis Due to the (greatly) increased time for the computations when using the multi—units

distance, the number of random permutations on which we computed the discriminability was reduced to 100.
To assess the goodness of the evaluation of the bias and the significance, we computed 5%200 permutations for

43



Victor and Purpura cost =0
100 * (1000 permutations)

c
x 10" -
55 0.021 5 0505
c 2
@2 o &
ST sS3 T o sEgT 05
g§% ° s232 SEzs
ZES Eos S 0w 5238 0ws
t8% 15832 1528
c B - F i =
s-=w gogg o §oge o True data : information = 0.1675
ES Ea E25 -
Es =58 oo =288 osts % of correct = 0.8236
§5% 4l m—m————  EBET E8%5g
2SE 2T EE oo 23 gE
==L gESo 8= 0.57
£ Varre—es e E P O P GRS —
35 = o015 ]
0 200 400 G600 800 1000 0 200 400 600 800 1000 s 0 200 400 G600 800 1000
Number of permutated data sets used Number of permutated datasetsused &  Number of permutated data sets used
x10* x 107 i
15 e 15 ) 0.528
= 2= ; tg
55 5535 5 8T o
TEE S8E5F 6s s8a=
BES 13 @ = B okt S osu
Yse NSO @ NEBE
tgs t§58% ° 1558 z 2
P . -
§E5 12 §82%5 ., 5285 o True data : information = 0.0165
EE% Eazg” Efs:
ZE8 11 -sS5Ss TE=S o5 L) =
§58 §55% ° £235% % of correct = 0.6074
==g 1 =2Egas =35E o5
S8 £ o
— s A" & /\NV_,_,-’——
0.9 = 4 3 0.516
© 200 400 G600 800 1000 200 400 60O 800 1000 o 0 200 400 G600 800 1000
Number of permutated data sets used Number of permutated data sets used £S5 Number of permutated data sets used
Victor and Purpura cost =15
100 * (1000 permutations)
x10°
5 0.022 0.585
48 °
w = w = S22~ o058
255 Soaf Eodc
- ® © - © - ©
® 23 @ S % a3 S 0575
o 4 o = 0.018 Y=sE
+ @ + & = » = o
SE8 a2 §328 S8% 8 o5 True data : information = 0.3149
2co S5S8% S52%%c
Eg5s o EZes ™ £255 osms % correct = 0.8963
$ob 38 S8E S 858
8 - 3 3
=£E SoEEMU N | E22E 55| A———
3.6 E] £
S—— £
34 = o012
o 200 400 600 800 1000 o 200 400 600 800 1000 o 200 400 600 800 1000
Number of permutated data sets used Number of permutated data sets used Number of permutated data sets used
3 s
3622 0015 2 [
£
EE
= = = 0595
55 S oou 5 E.Q
T=® 8 T 059
FES S 0013 &2
V=G @ Ts52s
ree g2g e . .
g§zs ° 5 e $E28 = True data : information = 0.1905
Es2 p- el Es ; =
£S5 28 £ 5% oom =5 s % correct = 0.8458
S8 BEE scg8
=53 28 g%f’! 001} A =85E 5
g e s S o
£ 5 e —————!
24 0.009 &
0 200 400 600 800 1000 o 200 00 800 1000 @ o 200 600 800 1000
Number of permutated data sets used Number of permutated data sets used S Number of permutated data sets used

Figure 15: Convergence of the estimates of the information and the percentage of correct in an ensemble of
single unit permuted data sets. Top: Victor and Purpura cost of 0; bottom: Victor and Purpura cost of 15. For
each cost, the first row represent the median classification, and the bottom row represents the quadratic clas-
sification. Each row ifs composed of the mean information, the 95th percentile of the information distribution,
and the 95th percentile of the percentage of correct distribution as a function of the number of permutations
used. Bold line: mean of 100 sets of 1000 permutations. Thin line: mean + 2 standard deviation among these
100 sets.

two example pairs of cells, one which discriminated well between the first and subsequent rewards, and another
which did not. We computed the mean and the standard deviation among the 5 repetitions of both the mean
information and the 95th percentile, as a function of how many permutations were used. The informative pair
is shown in figure 16 page 45; one of the cell is the example in the previous section. The shape of the curves
was not different with the other pair, but the asymptotic value of the mean and of the 95th percentile could be
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higher (possibly due to the fact that there were less trials), respectively equal to 0.01 and 0.07 for instance.
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Figure 16: Convergence of the estimates of the information in an ensemble of permuted data sets from a couple
of cells. The left side is the obtained with the quadratic method, and the right side with the median method. For
each method, the left column is the mean, and the right column is the 95th percentile. Each row is a different
combination of the temporal (Victor and Purpura) cost q, and the neuron identity cost k. Bold line: mean
of 5 sets of 200 permutations. Thin line: mean + 2standard deviation among these 5 sets. The value of the
information in the true (non—permuted) data is shown as an inset.

It can be seen that in most cases, a hundred permutations were sufficient to reduce by an considerable
amount the uncertainty on the estimates. When very little permutations are used, apparently, the five repetitions
we computed were not sufficient to sample that variability (e g, first line of the figure). The decrease seems
quicker than for single units, possibly due to a reduced variability of the total response in a trial. However, it
is true that for cells with a low information, in some cases, the significance at a single analysis window might
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not be very accurate. On the contrary, this is not a problem for the very informative cells on which the main
analysis focuses.

In general, this analysis reveals that for low informative cells or couples, the assessment of significance is
imperfect (there is still some variance on the estimation of the 95th percentile, which can be as high as 25% of
its asymptotic value in the examined examples). This is why we required that more than one analysis window
was significant, and this is why we generally focused on cells that had a high information.

A.3 Possible limitations of Friedman anova

Friedman Anova assumes that the data depend on two main factors, F; which can take values f1 € [1,2,...,ny ]
and F» which can take values f> € [1,2,...,n2].
Each k" observation O for the combination of factor (f1, f2) is modeled as :

O(f1,fork) = 1+ gy + Bpy + €11 fo.) (14)

where p is a location parameter, and € is an error.

The test thus assumes that all data come from distributions with the same (continuous) shape, but with
different locations due to the effect of the factors F and F5>. It determines whether the data is in agreement
with the null hypothesis that oy, = 0, and thus whether the variability in the data likely comes from error
and/or from differences in the factor Fb.

In our analyses, we used the "time" (measures done with increasing analyses window lengths) as the factor
F5, and the factor F} that was tested is the Victor and Purpura cost q.

A general caveat to using Friedman anova is that as the analyses windows are of increasing length, each
measurement is not independent from one another. This is violating one of the assumptions of the test. For
the information analysis, this is not a real problem because it can be shown additionally that on individual
analyses windows, there are significant differences between costs. For the correlation analysis, we had only
one measurement for each time point (the coefficient of correlation), and therefore classical tests could not be
done at each individual analysis window.

In the following, we will elucidate how this fact could harm our conclusions, and why we think the test is
still probably accurate.

The problem with time-related measurement is that if one measurement is significant at one time point,
then it is likely to propagate the significance at a following time point. For instance, we would say that the fact
that the ¢ = 5 curve in figure is superior to the curve ¢ = 0 at an analysis window of 450 ms is only caused by
the inheritance of a difference already present at an analysis window of 400 ms. Consequently, pooling among
these analyses windows when computing the statistics is not relevant, because of the fact that the difference is
conserved does not mean that it is more significant.

However, we would like to argue that such cases are probably not occurring in our particular situation. In-
deed, each data point comes from the pooling of many trials from many (mainly) independent cells which have
all been shown to be independently very well discriminating between first and subsequent rewards ; therefore,
a high stochastic deviation seems unlikely.

Moreover, it can be seen that the correlation changes a lot with increasing analyses windows, with even
a sign change in some cases. This suggests that the spikes that are added in time are strongly changing the
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L . reaction plus move-
reaction times movement times .
ment times
. . . » = 0.0019 ; p = 0.054 ; » = 0.0203 ;
dian method format
median metho information ¢ € [30,35,80] g€ [35] ¢ € [35,80)
p = 9.2 10-8 ; p =21 1078 ;
¢ —0.14
% correc ¢ € [30,35,40,60,80] | P~ 01469 q € [30,35, 40, 60, 80]
) ) i p=1310"12; p=3.610"7; p=1010"12;
dratic method format
quadtatic metio fiormation q € [30,35,40,60,80] | ¢ € [35, 40, 60, 80] q € [30, 35, 40, 60, 80]
p=5710 13, p=3410 11, p=5810 13,
% correct
g € [30,35,40,60,80] | ¢ € [35,40, 60, 80] q € [30, 35,40, 60, 80]

Table 11: p values for the Friedman anova on values of correlation between neural distances and response
times. Analyses windows from [0.2, 0.3] to [0.9, 1] were included. The conclusions are unchanged if for each
group, the Friedman anova is realized on all analyses windows where at least one cost is significantly positive.
The values of q are those that are significantly higher than cost ¢ = 0 (post hoc with Tukey’s honestly significant
procedure).

correlations relative to previous smaller analyses windows. Therefore, it is likely that a *chance deviation’ at
the beginning of the spike train would be "turned down’ by the new spikes.

Additionally, it should be possible to further reduce the bias by taking analyses windows of very different
lengths. The results were quite robust to a decrease in the number of analyses windows used. We tried to
use three analyses windows at which the correlations were already significantly positive, and which were as
different from each other as possible. For instance, one can only use the analyses windows of 0.25, 0.5 and
1 s and still get a significant effect of the cost with the median method. In that case, each successive window
doubles the window length, thus making the probability of chance inheritance very weak.

Finally, a supplementary control analysis was made : the spike trains were binned every 0.1 s from the
beginning of the reward, and the correlation was assessed on each of these individual, separated analyses
windows. Correlations were always significant and positive for some costs for analyses windows [0.2, 0.3] s
and longer analyses windows. An anova of Friedman was realized with the correlation on each of the windows
([0.2,0.3]s,[0.3,0.4]s , [0.4, 0.5] s, [0.5, 0.6] s, [0.6, 0.7] s, [0.7, 0.8] s, [0.8, 0.9] 5, and [0.9, 1] s) as the F5
factor. The significance of the effect of the cost remained for all analyses but the correlation of movement times
with the median method, which was already less marked in the preceding analyses, and for which the number
of significant analyses windows were reduced (table 11, page 47).

Further, post hoc comparisons always showed that some costs ¢ > 0 were significantly different from cost
0. It might be argued that there are correlations remaining, because the fact that a neuron emits a spike at time
t has an impact on the probability that it emits a spike at time ¢1 > ¢. However, the particular correlation type
that would invalidate our analysis is that if by chance the spike train during the first analysis window correlate
with behavior, then it increases the chance that the spike train emitted on the next analysis window correlates by
chance with behavior at the same cost, and this effect remains when different trials coming from different cells
are pooled. This seems rather unlikely. Finally, of course, this approach also has its own limits (arbitrariness
of the analysis window length, and of its boundaries ; *border effects’), but they are different from the method
described in the main text and give globally consistent results. Notably, for this analysis, it is fair to argue that
spike count classification (and low—cost classifications) are unfavored because it is only possible to integrate or
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match spikes over less than 0.1 s. Accordingly, no decrease of correlation was observed with higher costs in
the ’individual analyses windows’ analysis. This hypothesis is however not consistent with the main text result,
which allows integration of the spikes during up to 1s. Conversely, the main text analysis could be biased if the
maintenance of the difference between spike count and higher costs for many analyses windows was only due
to an inheritance effect of the difference from a smaller, previous analysis window ; but this possibility is made
unlikely by the complementary analysis.

Taken together, these analyses suggest that higher costs were consistently above ¢ = 0, for many analyses
windows. This has some relevance notably because it is very likely that the cells that mostly participate in the
correlation for early analyses windows are not the same as those which have more impact on longer analyses
windows (see notably examples of single cells raster plots in [31], which shows that individual cells firing is
not continuous over the whole post—reward second).

However, these analyses do not state whether at one analysis window the difference between ¢ = 0 and
higher costs is big or significant.

Of course, the best case would be to be able to observe significant differences between two costs using an
analysis that requires only one window per cost. We can do it by shuffling the data points between two costs
and look if a similar or higher difference in correlation coefficients can occur by chance. In our data, it is not
likely to be the case for all groups, because the difference in correlations can be small.

Finally, we would like to clarify why in figure 8, page 22, the ranks of different costs (first column of the
figure) may appear at odds with the differences in the curves for different costs. Notably, cost 0 appears to
have a higher rank than cost 80, even though the curve at cost 0 looks well below the curve at cost 80. This is
because on the very first analyses windows, cost 0 is just above the other costs, and thus gets the highest rank,
which has a strong effect on its cumulative rank, whereas cost 80 is always either last or second to last, and thus
it gets a smaller cumulative rank.

A.4 Additional p—values tables for comparison between temporal costs q of single units dis-
crimination abilities

A.4.1 Best discriminating cells

Information, median method | Percentage of correct, median method
All cells, g € [0,5, 10] p=1.0494 10~ p=1.1551 107*
One cell / session, ¢ € [0, 5, 10] p = 3.05036 10~ p = 5.79605 10~
All cells, g € [5,10] p=0.0701 p=0.7172
One cell / session, g € [5, 10] p = 0.0508 p = 0.5451

Table 12: p—values for the anova of Friedman for the median method and restricted subsets of Victor and
Purpura temporal cost g, as indicated. FEither all cells with high and consistent discrimination values are
included, or only one cell per session is included, to respect better the independence assumption of Friedman

anovda.
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A.4.2 Remaining cells

Information % correct Information % correct
median method median method quadratic method quadratic method

All cells

’ =64 107° = 0.001 = =

¢ €1[0,5,10] p = 6.40399 10 p =0.0013 p=0 p=0

One cell / session, _15 _16

¢ €1[0,5,10] p = 0.0591 p=0.001 p=9.5479 10 p = 2.2204 10

All cells,

g€ [5,10] p = 0.6491 p = 0.3445 p=0.2172 p = 0.8601

(@) 11/ ion,

ne el 1SeSSION. | 0.9256 p = 0.6796 p=0.1811 p = 0.8485
q € [5,10]

Table 13: p—values for the anova of Friedman for the median method and restricted subsets of Victor and
Purpura temporal cost q, as indicated. Either all cells with low and/or inconsistent discrimination values are
included, or only one cell per session is included, to respect better the independence assumption of Friedman
anova

A.5 Additional discussion about the slightly negative correlations between early first-reward
neural activity and subsequent response times

On the contrary to long analyses windows, where the correlations between distance to a ‘stereotypic’ first
reward spike train and subsequent response times were positive, for very small analyses windows, smaller (and
at times significant) negative correlations were observed (see figure 8, page 22, for instance). In the main
text, we propose that for long analyses windows, spike trains that are very different from the approximated
‘canonical’ first reward spike train are produced in trials in which the activity was not efficient to produce the
switch (because the monkey is very trained), whereas when the analysis is restricted to the very first spikes,
some of the outliers might be those for which the neural response was quicker and could thus potentially allow
the monkey to answer quicker. To test this hypothesis, we tried to correlate the distance of one spike train from
the ensemble of other first reward spike train with either the latency of the first spike, the median latency of all
emitted spikes, and the mean latency of all emitted spikes. When no spikes had been emitted, we arbitrarily
attributed the value of the length of the analysis window plus 1 ms to the minimal, median or mean latency. We
used the groups of *well discriminating cells’ selected by their information values (which showed the negative
correlations in figure 8, page 22), and we computed Spearman’s coefficient of correlation.

Very significant negative correlations were found for all three measures for the two first analyses windows,
strengthening the idea that ’big neural distance’ spike trains matched with early responding spike trains for
small analyses windows. Additionally, the correlations were more negative for high temporal costs q than for
g = 0, in agreement with the fact that ¢ = 0 did not lead significant correlations for small analyses windows
(see figure 8, page 22).

Finally, when the same correlations were computed for longer analyses windows ([0 0.6]s and [0 1]s), the
median and mean latency correlated positively with the neural distance, whereas the minimal latency (latency
of the first spike) kept being negatively correlated with the neural distance, though with a smaller absolute
coefficient (and it was not always significant). Thus, for longer analyses windows, the main effect was rather
that for spike trains with high distance most of the spikes occurred late.
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A.6 Correlation between first-reward neural activity and movement times or (reaction + move-
ment) times

A.6.1 Correlation between distance to an estimated ’ideal first reward spike train’ at first reward and
following reaction+ movement times

Single units activity
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Figure 17: Correlation between (reaction + movement) times and distance of a spike train to the "ideal first reward response”, for high
discrimination ability cells. The first two rows use the quadratic classification, the last couple of rows use the median classification. The
correlation between distance to an evaluated ’ideal first reward’ spike train and reaction + movement time was assessed by pooling all
the data points from the cells that were selected as highly and consistently discriminative with the % of correct or with the information,
as indicated (same groups as in figure 4, page 18). The first column shows the result of the post—hoc comparisons with Tukey’s honestly
significant procedure on an Anova of Friedman comparing the different costs (and removing the time effect). Stars indicate Victor and
Purpura temporal costs q that were significantly different from cost q=0 (spike count based distance). Please see the appendix, section
A.3 page 46, for more details on possible limits of Friedman anova. The figures are the p—values of the Friedman test on all costs. The
second column shows the evolution of the correlation when distances are computed on spike trains of increasing lengths. The third
column shows the evolution of —log,,(p — value) for the correlation. Colors represent different costs as indicated (unit: /s).
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Figure 18: Correlation between neural distance and reaction plus movement times, for the best couples of cells,
with the quadratic method (N = 19 couples, first two rows) and the median method (N = 20 couples, first
two rows); as a function of the temporal cost q and the neural identity cost k. First row: analysis window of [0
0.35] s; second row: analysis window of [0 0.6] s. First column: p value for the comparison of the correlation
with the correlation at optimal costs. The value of 1 indicate the position of the optimal costs ; and a black
flat plane at p=0.05 is drawn. Second column : value of the Spearman correlation coefficient. Third column:
— logo(pvalue) for a test of significance of the correlation coefficient (Hy : the correlation coefficient is null);
a black flat plane at p=0.05 is drawn.
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A.6.2 Correlation between distance to an estimated ’ideal first reward spike train’ at first reward and
following movement times
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Figure 19: Correlation between movement time and distance of a spike train to the ‘ideal first reward response’, for high discrim-
ination ability cells. The first two rows use the quadratic classification, the last couple of rows use the median classification. The
correlation between distance to an evaluated ’ideal first reward’ spike train and movement time was assessed by pooling all the data
points from the cells that were selected as highly and consistently discriminative with the % of correct or with the information, as
indicated (same groups as in figure 4, page 18). The first column shows the result of the post—hoc comparisons with Tukey’s honestly
significant procedure on an Anova of Friedman comparing the different costs (and removing the time effect). Stars indicate Victor and
Purpura temporal costs q that were significantly different from cost q=0 (spike count based distance). Please see the appendix, section
A.3 page 46, for more details on possible limits of Friedman anova. The figures are the p—values of the Friedman test on all costs. The
second column shows the evolution of the correlation when distances are computed on spike trains of increasing lengths. The third
column shows the evolution of —log,,(p — value) for the correlation. Colors represent different costs as indicated (unit: /s).
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Figure 20: Correlation between neural distance and movement times, for the best couples of cells, with the
quadratic method (N = 19 couples, first two rows) and the median method (N = 20 couples, first two rows);
as a function of the temporal cost q and the neural identity cost k. First row: analysis window of [0 0.35]
s, second row: analysis window of [0 0.6] s. First column: p value for the comparison of the correlation
with the correlation at optimal costs. The value of I indicate the position of the optimal costs ; and a black
flat plane at p=0.05 is drawn. Second column: value of the Spearman correlation coefficient. Third column:
—logo(pvalue) for a test of significance of the correlation coefficient (Hy: the correlation coefficient is null);
a black flat plane at p=0.05 is drawn.

As stated in the main text, results for the movement times are far less clear than results for the reaction
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times or for reaction + movement times. First, the difference between correlations at different costs are often
not statistically different. Second, for the smaller analysis window and the quadratic method, correlations are
rather small in absolute value, but similarly significantly negative at (¢ = 0, k = 0), and significantly positive
at (Qopt, kopt). This strengthens the idea developed in the main text that cells which activities appear more
"switch-related’ are less strongly and consistently related to movement times than to reaction times or to the
total action times (reaction plus movement times).

A.7 Some subpopulations of ‘bad’ discriminating cells can produce a first reward activity
which correlates with behavior

We also tested possible correlations between deviation of a first reward spike train from a ‘canonical’ first
reward spike train and following response times in the following populations of cells :

e the cells which maximal (among costs and windows) discrimination values lied above the first quar-
tile and below the third quartile of the whole population maximal discrimination values distribution
(‘medium’ group)

e the cells which maximal (among costs and windows) discrimination values lied below the first quartile
of the whole population maximal discrimination values distribution (‘low’ group)

The discrimination value was either the information or the percentage of correct, computed with either the
quadratic or the median method.
We will only give a brief overview of the results

A.7.1 Correlations with movement times

For the ‘medium’ group, the correlation increased in time up to values quite similar to those of the ’best cells’
(presented in section 19, page 52). For the ‘low’ group, the correlations were either positive or non significant
depending on the methodology used.

These results show that the correlation with movement times was globally not very specific to the cells
which response discriminate well between fist and subsequent rewards.

A.7.2 Correlations with reaction times

For the ‘medium’ group, correlations were always very weak (around 0.05), though sometimes slightly signifi-
cantly positive or negative.

For the ‘low’ group, results were strongly dependent on the methodology used. When cells were selected
thanks to their percentage of correct discrimination, with the median or quadratic method, the correlations were
generally decreasing in time and becoming slightly negative. When cells were selected thanks to their informa-
tion, correlations were also slightly negative with the quadratic method, whereas with the median method they
were positive and rather high (around 0.18) for an analysis window of [0 0.15]s, and then decreased. Indeed,
the two methods did not lead to the same subsets of "low encoding’ cells (only 20 cells over 36 were common),
but differences were still present when the same cells were analyzed with median as compared to quadratic
method.
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This puzzling result may show that the population of ‘low discriminating’ cells is heterogeneous, and may
be formed of subpopulations which we did not separate well when looking at the discrimination ability between
first and subsequent rewards. Because they don’t discriminate well between first and subsequent rewards, these
cells might are not likely to be involved in switch production per se ; however, they could still correlate with
behavior if they were motor or excitation related for instance. It is also possible that they would discriminate
between first and subsequent reward if a different method was used.

A.8 Details on the relative influence of ranks and neural distance on reaction times

A.8.1 The response times at the second rewarded touch significantly correlate with the rank of the first
reward trial

We confirmed the results of [31] and found significant correlations between the rank (i. e. the number of
preceding errors) of the first reward trial and the reaction time at next touch. Results are detailed in table 14
page 55.

: : ) Reaction time +
Reaction time Movement time .
movement time
Selection by
adratic method, | & 0.2170, | ¢ = 03665, | ¢ = 0.31112,
u 9
?nformation p = 2507107 p=4.66310"" p = 6.58310714
Selection b
ea‘iﬁ;ﬁ? Zlethod c = 02032 ¢ = 03443 )c = 02904
u 9
3/ of correct p=3.18110"10 p=1.38510"15 p=9.52110"20
(o)
Selection b
nfezica;olet}kllod c = 0207 |c = 03617, c = 0.3005,
information ’ p=8.237107° p=1.54310"18 p = 5.30610713
Selection b
nfe:licailoilnetzod c = 02006, |c = 03254, |c = 02748,
% of correct ’ p = 1.561071 p=9.16310"% p=1.16110"17
(o)

Table 14: Spearman correlation values between rank of the first correct and response times on the next target
touch, for trials pooled on the same cells and trials as in 8, and their p—value

A.8.2 It was theoretically possible to have an influence of the rank of a first reward spike train on its
global distance to a category composed of ’first reward spike trains’ of all ranks

This section aims at giving a proof a principle to the apparently counterintuitive following statement : even
though the group of first reward spike trains is composed of equal number of trials preceded by 0, 1 or 2 errors,
the number of errors can still have an impact on the distance of the spike train to the ’first reward category’
(computed as in figure 6, page 20). This is a toy example ; we do not argue that the data looks like it.

To illlustrate this effect, we consider the following (oversimplified) case in which the three classes (corre-
sponding to 0, 1 or 2 errors preceding the trial) are each composed of the three points of aligned equilateral
triangles (figure 21, page 56).

55



A) ¢ B) count 0 errors

before

count
1 error

before

count

Figure 21: A)Three different subcategories, each one composed of three points forming the angles an equilateral
triangle, are considered in one category. The three triangles are aligned. B) Repartition of the pairwise
distances between any "spike train" of the category of the corresponding color, and all other spike trains in
the mixture group. The arrow represents the median. As can be seen, the value of this median is consistently
influenced by the category to which the "spike train" belongs.

For quadratic classification, when taking the limit case in which the distance of one spike train to the
ensemble of other spike trains is the distance to the nearest neighbor, it is very apparent that for spike train of
the blue group, this distance (a) is smaller than the distance for those of the green group (b), which is itself
smaller than the distance for those of the orange group (e).

For the median classification, the effect of the group is still visible, as illustrated by the histograms of
the pairwise distances between spike trains of a given group, and all other spike trains (figure 21 B , see the
monotonic increase of the median, as indicated by the arrow).

A.8.3 Ranks and distance to an ideal first reward spike train’ could slightly correlate, but at different
costs and with a different timing than distance and behavior

Small (<0.13) but significant correlations between rank of the first reward and distance of a ’first reward spike
train’ to all other ’first reward spike trains’ were indeed found, but generally for Victor and Purpura temporal
costs ¢ € [0,5,10] and small analyses windows (<0.3 s), so at different costs and times than those at which
the correlation between behavior and neural distance is maximized. The difference between the maximal cor-
relation rank/distance and response times/distance was however always significant or a tendency (p < 0.1), as
stated in the main text.
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A.8.4 At the cost effective to correlate with behavior, there was no correlation between ranks and our
definition of first reward spike train distance

Results showing that when decoded in a way that maximizes the correlation between neural distances and

behavior, the first reward rank had no significant impact on the neural distance are detailed in table 15, page 57.

Best correlation between (reac-
tion, movement, sum) times and
distances

Correlation between ranks and
distances (same cost and analy-
sis window length) and its sig-
nificance

p—values for comparison of the
correlations (permutation test)

Selection by quadratic method,
information

¢ = (0.2715,0.2860, 0.3161)

= (0.0060,0.0309, 0.0326),
(0.8875,0.4685,0.4431)

p=(<107% <107 < 107)

Selection by quadratic method,
% of correct

¢ = (0.2717,0.1887, 2890)

= (0.0370,0.0290, 0.0400),
(0.2568,0.3747,0.2202)

p=(<107*6107*, < 107%)

Selection by median method,
information

¢ = (0.2419,0.2802, 0.2890)

= (0.0106, 0.0446, 0.0355),
(0.8044,0.2947,0.4045)

p=(<107* p<107* 210"

Selection by median method, %
of correct

¢ = (0.2688,0.2109, 0.2836)

= (0.0243,0.0360,0.0271),

C
P
C
P
C
P
C
p = (0.4181,0.2313,0.3681)

p=(<107", <107 <107

Table 15: Spearman correlation values on trials pooled on the same cells and trials as in 8, between distances

and ranks and between distances and the response times, as indicated. The significance of the difference

between correlation is computed thanks to a two sided permutation test.

A.8.5 With the exception of movement times, ranks and neural distance correlated equally well with

behavior

Best correlation between (reac-
tion, movement, sum) times and
distances

Correlation between ranks and
response times

p-values for comparison of the
correlations (permutation test)

Selection by quadratic method,
information

¢ = (0.2715,0.2860, 0.3161)

¢ = (0.2170,0.3665,0.3112)

p = (0.5830,0.1680, 0.8510)

Selection by quadratic method,
% of correct

¢ = (0.2717,0.1887,0.2890)

¢ = (0.2032,0.3443,0.2904)

p = (0.0910, 0.0050, 0.8390)

Selection by median method,
information

¢ = (0.2419, 0.2802, 0.2890)

¢ = (0.2078,0.3617,0.3005)

p = (0.3470, 0.1800, 0.9350)

Selection by median method, %
of correct

¢ = (0.2688,0.2109, 0.2836)

¢ = (0.2006,0.3254, 0.2904)

p = (0.1330, < 10™3,0.9770)

Table 16: Spearman correlation values on trials pooled on the same cells and trials as in 8, for different

response times and two possible explanatory variables : the neural distance and the rank of the first correct.

The significance of the difference between correlation is computed thanks to a two sided permutation test.

We compared the maximal correlation between neural distance to an ideal ’first reward spike train’ and fol-

lowing response times, versus the correlation between rank of the first reward and following response times.

Results are presented in table 16, page 57. It can be seen that ranks and neural distances correlated similarly

with reaction times and with (reaction + movement) times, whereas ranks correlated better than neural distances

with isolated movement times for the less stringent selection of neurons (with percentage of correct).
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A.9 Cells which discriminate better between first and subsequent reward are probably also
involved at other stages of the task, but probably less strongly

A.9.1 There is a medium correlation between discrimination ability between first and subsequent re-
ward and discrimination ability between beginning of a new problem vs beginning of a new ex-
ploitation trial

A previous study (Quilodran et al [31], their figure 6) had shown that in a subset of cells showing modulations
of the firing rates in the first vs subsequent rewards, there was also a modulation of activity at the beginning of
each trial, when the monkey had to come back to the same target, but not at the beginning of a new problem,
after the four rewards had been delivered. To quantify how robust this difference of modulation was in the whole
ACC population, we aligned all spike trains at the time of reward delivery, and began our analysis windows
1.6 seconds after reward delivery, just before the modulation of activity that had been observed in Quilodran et
al. Analysis windows were increased up to 3.6 s by 0.2 s. We contrasted the activity occurring after the 1st,
2nd and 3rd rewards (produced before the monkey comes back to the learned rewarded target, category 1), with
the activity produced after the last 4th reward (before and during the beginning of a new problem, category
2). Problems with more than four rewards were discarded. It should be emphasized that the external physical
events occurring are no longer the same between the two situations. In category 1, a lever touch appears on
the screen around 2 seconds after the reward, followed by a fixation point. In category 2, a signal to change
indicating the start of a new problem appears around 2.5 seconds after the reward.

ACC single cells also discriminate between the continuation of a problem and the beginning of a new
problem The same strategy as the one of ‘first-reward analysis’ was followed : a k—-means algorithm on the
maximum discrimination value (among all costs and analyses windows) was used to separate the cells into
a group of low and a group of high discrimination ability cells. Finally, the selection was further refined by
imposing that there exists a cost for which the discrimination was superior to the 95th percentile of the permuted
data, for at least 5 consecutive analysis windows. The results are presented in figure 22, page 60 for the ’best
cells’.

Even though the choice of the reward time as the temporal reference is somewhat more arbitrary at this
moment of the task, slightly taking into account temporal structure of the spike trains still improved the classi-
fication as it significantly increased for ¢ = 5 as compared to ¢ = 0 ; however, the ‘optimal’ temporal accuracy
appeared lower than at the reward time, because the classification tended to be worst at ¢ = 10 as compared to
q = 5 (see table 17, page 59), whereas the opposite tendency was found at the reward time.

The correlation between discriminability power at the reward time and at the beginning of trials is signif-
icant but small We tested whether the cells which discriminated well between first and subsequent rewards
were also these which discriminated well between the beginning of an exploitation trial and the beginning of
the first exploration trial, by computing the correlation between the maximum discrimination measures (infor-
mation or % of correct, with the median or quadratic method) among all costs and analyses windows.

For all ACC single units, the correlation was rather weak but significant (table 18, page 59, first line).

Moreover, table 19 page 61 reports the proportion of cells in the ‘well discriminating groups’ at the reward
time that were also in the‘well discriminating groups’ at the beginning of trials. These proportions are arguably
small, though generally significantly superior to the proportions of ‘well discriminating cells’ at the beginning
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drati drati
quadiatic quadiae median method, | median method,
method, method, ] )
. . information % correct
information % correct
All costs All cells 0 0 0 0
1 cell/session 0 0 0 0
q=5>q=0 All cells 0 0 9.6 106 0.0081
1 cell/session 0 0 43107 0.0341
q=5>qg=10 | Allcells 0.0678 0.0006 0.0391 7.310°6
1 cell/session 0.0965 0.001 0.0747 0.0004

Table 17: Results for the Friedman anova for an effect of the costs, for groups of well-discriminating cells

(selected thanks to the classification method/measure indicated in the columns) at the approximate moment of

the beginning of the

trial.

drati drati
quadratic quadratic median method, | median method,
method, method, ) .
. . information % correct
information % correct
= 0.4923 ; = 0. : = 0. ; = 0. :
All 145 cells c 0.49 io’ c 0 380766 il e 0 3705’)6 e 0 380536 ;
p=4.6510 p=2.3310 p=4.5510 p=22910
Best cells at reward time foreach | ¢ = 0.0506 ; | ¢ = 0.0165 ; | ¢ = 0.0301 ; | ¢ = 0.2787 ;
(measure, method) p=0.84 p = 0.9286 p=0.9013 p = 0.0859

Table 18: Correlation between the maximal discrimination ability value at the reward time, and the maximum
discrimination ability value at the trial start moment, within groups of best discriminating cells selected by the
classification method/discrimination measure indicated by the column.
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Figure 22: A) Information with quadratic method; B) Percentage of correct with quadratic method; C) In-
formation with median method; D) Percentage of correct with median method. Curves represent the mean
discriminability among a subset of cells with high and consistent discrimination abilities. Bars represent stan-
dard errors. The different colors represents different Victor and Purpura temporal costs g, as indicated in the
legend (unit: /s). The figures on top left of the graphs are the number of units used. Please note that all
analyses windows start 1.6 s after the reward and end at the time indicated on the x axis.

of trials among the whole ACC single units population.

Therefore, a ‘reward time well discriminating cell’ had a higher probability to be also a ’beginning of trials
well discriminating cell’ than a cell taken at random in the whole ACC single units population.

Finally, among the populations of ‘best cells’ at the reward time, there was no significant correlation be-
tween the discrimination ability at the reward time and at the trial start moment, suggesting that some cells
which were rather exclusively ‘good’ at the reward time existed (table 18, page 59, second line).

Globally, the results show that the populations of cells discriminating well at the reward time and at the
beginning of trials are only partly overlapping, and rather argue for a ’specialization’ of at least some cells in
one or the other encoding.
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uadratic . . .
q quadratic median method, | median method,
method, . .
) i method, % | information % correct
information
correct
Nboest reward time Nbest trial start| 9 20 10 20
best reward time 18 32 20 39
Nicst trial start 30 AT 38 50
tot 145 145 145 145
value comparison of pro-
pva P Pro= 1 < 0.05 p < 0.05 p < 0.05 p>0.05
portions

Table 19: Comparison of the proportion of cells with good discrimination ability at the two moments among the
"reward time best discriminating cells’, and the proportion of cells with good trial start discrimination among
the whole ACC population.Results are the output of the tmcomptest function of MATLAB

A.9.2 There was a significant but arguably smaller correlation between 2"¢ reward activity and re-
sponses times at the third touch

On the second and third reward, the monkey receives the confirmation that it chose the good target and that it
has to go on touching the same target. If the ACC cells are generally implied each time the animal maintains
its exploitation policy, then their activity at the second reward time should correlate with their behavior at the
third touch. If, on the contrary, ACC single units are really specialized in the production of a behavioral switch
from exploration to exploitation, then no or little correlation is expected after the first reward. We will focus
on the most selective groups of cells : these that have been selected thanks to their information measure. As a
preliminary analysis, we verified that the distributions of behavioral times were statistically indistinguishable
between the second and third rewarded touch, which controlled that differences in correlations were unlikely to
be due to differences in behavioral variability, for instance. Results are presented in table 20 ; page 62.
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onds e 3 ouch p value comparison
(see legend)
same trials and
11 "well dis- - 0 .
cels as Wl @i o median = 0.1729s ; | median = 0.1669s ; | *** 06675
criminating” with | reaction times DPrksum = 0.8288 ;
. - std = 0.5135s std = 0.2901s
median  informa- Pansbdl = 0.5851
tion group
= 0.5851 ;
movement median = 0.206s ; | median = 0.204s ; | U** 0.2831
. Prksum = Y. 5
times std = 0.8598s std = 0.4291s
Pansbdl = 0.8372
same trials and
11 well = 0.8373 ;
cels oA o we o median = 0.1702s ; | median = 0.1691s ; | **
discriminating reaction times Drksum = 0.8376 ;
. ) std = 0.5136s std = 0.2899s
with quadratic Pansbdl = 0.9974
information group
movement median = 0.206s ; | median = 0.204s ; Phs = 0.9(?;282;
. Prisum = Y. 5
times std = 0.8591s std = 0.4833s
Pansbdl = 0.9475

Table 20: Comparison between second and third touch of the reaction times and the movement times for the cells
and trials selected with the median and quadratic method, for the information measure. Medians and standard
deviations (std) are reported, as well as the p values for a two sample Kolmogorov Smirnoff test (kstest2) com-
paring the global distribution shapes (pis), a rank sum test comparing more specifically the medians (prisum);
and an Ansari Bradley test which compares the dispersion (e g variance) of the distributions.

The data show positive significant correlations between the deviation of the second reward spike train to an
‘ideal’ second reward spike train, and reaction times, or with the sum reaction + movement times.

For movement times, positive correlations could also be found for long analyses windows, but stronger
negative correlations were found on small analyses windows. This means that reaction times and movement
times were not consistent anymore (indeed, the neural distances are the same between the two groups). Future
research will have to investigate further this question. A hypothesis may be that, once the monkey is in the
middle of its exploitation phase, reaction times and movement times taken separately may not reflect the con-
fidence of the monkey into its choice; instead, when the reaction time is low, the monkey might ‘compensate’
with a longer movement time.

Moreover, in any case, the positive correlations were smaller than at the first reward moment. We finally
tested the significance of this smaller correlation, by comparing the maximal (over analyses windows and costs)
positive correlation distances vs response times, between the first and second reward, thanks to a permutation
test (see methods, section 2.5, page 14). We can see in table 21 page 63 that the difference failed to reach
significance for the median method and the reaction times, but was significant for the three other groups.
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1 : spike trains at the first reward moment ; response times at the second touch

2 : spike trains at the second reward moment ; responses times at the third touch

) . reaction + movement times :
reaction times : 1 vs 2
1vs?2
trials and cells as ’well dis-
z:“r;en;‘:‘; an ii ;Zz,ie,nf; c=02419vsc = 0.1614: | ¢ = 0.2890 vs ¢ = 0.1571 :
11m1 1 W1 1 1 -
unating p = 0.1670 p = 0.0212
mation group
trials and cells as ’well dis-
:E:nz:‘; an IC;’] SaZdX'c ,lz c=02715vsc = 0.1551 : | ¢ = 0.3161 vs ¢ = 0.1505 :
1 W u 1 1n-
aung q p = 0.0405 p = 0.0023
formation group

Table 21: Maximal (over windows and costs) correlations between reward activity and behavioral times at next
touch, for the first reward (first column) and the second reward (second column), along with the p—value of a
permutation comparison test between first and second reward.

Taken together, these results suggest that at least the group of ‘best cells’ relative to information at the first
reward correlated differently and less well with behavior at the second reward. This suggests that at least some
cells have an activity which correlates better with behavior at the moment of the behavioral switch, and which
activity may be functionally more important at the moment of the behavioral switch.

A.10 Relative effects of k and q on the discrimination ability of couples
A.10.1 Comparison of information for best couples between the optimal costs and other costs

We report here (table 22, page 64) the results for the comparison of the information distributions among ‘best
couples of cells’, for different outstanding couples of costs.
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—0> = 0,
(@opt-kopt) | (a=0,k=0) (@optk=0) | (= 0kope) | \Topt at =0 (@
k=0 kopt at q:O)
Selection with
. . Imaz = 0.2883;
information, _ p = 00499 ; | p = 0.0438 ;
. = 15/s ; =21910"% = 0.0239 = 0.0036

median method , Z‘)pt -1 25/ P p P Qopt at k=0 = 25 Kopt at g=0 = 2
[00.6] s opt = =
Selection  with
information, Imar = 0.3162; 4

. = 0.0285 ; = 2.0845 10~ % ;
quadratic Qopt = 15/s i | p=5.0978 107 p=0.0285 71’8327 o4 p s i s
method , | kopt = 1.5 ’ dopt at k=0 = opt at =0 = %
[00.6] s
Selection  with
. . Imaz = 0.2706;
information, p = 00834 ;| p = 0.1404 ;
median method , Zozot -1 5/s 5 | p=0.006 p=0.0438 p=0.0128 Gopt at k=0 = 10 | Kopt at g=0 = 1.75
[00.35] s opt
Selection  with
information, Imaxr = 0.2751; 4

. ) = 0.1290 ; = 4.5611 10 ;
quadratic qopt = 25/s; | p=2.019810~F p = 0.0702 §2699 10-4 P =20 i =175
method » | kopt =1 ’ dopt at k=0 = opt at ¢=0 = =
[00.35] s

Table 22: Summary of the comparison of median information among well-discriminating couples of cells. The

second column shows the maximal information, as well as the optimal costs q and k. The other columns give

the result of the rank sum test between the optimum and the median information at indicated costs.

A.10.2 Influence of the identity cost k on the classification of first vs subsequent reward

To better understand the influence of the identity cost k on the classification, we looked at how the change from

k=0 to k = k,p: improved the classification for best couples for the longer analysis window [0 0.6] s at which

the differences were clearer. For practical reasons, this was done on the distances that were extracted for the

behavioral times analysis and excluded a few data points compared to the information analysis (those for which

one of the response time could not be retrieved). The results are presented in table 23, page 64 at ¢ = qopt,

and in table 24, page 65 at ¢ = 0. We can see that at optimal temporal cost, the main effect was to improve

the classification for the ’subsequent reward category’, whereas the improvement was more balanced between
categories at cost ¢ = 0.

(qopta kopt)

(QOpt7 0)

quadratic method

15treward s other rewards 18treward other rewards
% correct ; me- | g9 1482 295 1386
dian method 473 1583 473 1583
Po correct S| o313 1433 299 1348

458 1544 158 1544

Table 23: Improvement of the number of correct classification at optimal temporal cost g when neural identity

is optimally weighted (kop:) as compared to when it is not (k = 0).
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(g=0, kopt at q:O) (q =0, k= 0)
1treward s other rewards 1%t reward other rewards
% correct ; median | gs6 5 1222 327.5 1206
method 473 1583 473 1583
% correct | ggy5 1210.5 239 1013
quadratic method 458 1544 58 1544

Table 24: Improvement of the number of correct classification for spike count (¢ = 0), when neural identity is
optimally weighted (kopt at q—0) as compared to when it is not (k = 0).

Adding a neural identity cost will either increase the distance between spike trains, or keep it unchanged if
changing neural identity would never reduce the distance.

We could find evidence that for the optimal temporal cost g, the improved classification for the ‘subse-
quent rewards’ spike train was due to a higher global increase in the distance from a ‘subsequent reward’ spike
train to the ‘first reward’ category, as compared to a smaller increase in the distance from a ‘subsequent reward’
spike train to the ‘subsequent reward’ category (see the two first rows of table 25, page 65). Such global effects
were not observed or were substantially smaller for first reward spike train or for spike count classification
(table 26, page 66). This suggests that for spike count based classification, the improvement due to increasing
k occurred in a more subtle, case by case way.

A = [(distance to category ‘1° reward’)](qow,kom) — [(distance to category ‘1% reward’)](qow,k:o) (15)
B = [(distance to category ‘other Tewards’)](qom,kow) — [(distance to category ‘other rewards’)](qop“k:o) (16)
C=B-A (17)
dian(B-A) ; 1
median(A) | median(®) | median(B-A) pvatue
of signtest
‘other rewards’ spike trains, median method 1.6269 1.1985 -0.3021 ; p = 6.235 10736
‘other rewards’ spike trains, quadratic method 1.6446 1.1120 -0.379 ; p = 3.1605 10~59
‘15, reward’ spike trains, median method 1.6996 1.7517 0;p=0.8164
‘15 reward’ spike trains, quadratic method 1.5945 1.7246 0.0266 ; p = 0.3265

Table 25: q = qopt: Increase in the distance of spike trains coming from categories indicated in the rows to
categories indicated in the column, and comparison of the increase to category ‘other reward’ vs to category
first reward’, when k is increased from 0 to kop;.
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A = [(distance to category ‘1°* reward’)],=o.x — [(distance to category ‘1°'reward')](q=o,k=0) (18)

opt at q=0)

B = [(distance to category ‘other rewards')|(q—o,k,,; o ,—0) — [(distance to category ‘other rewards’)] q—o k=0
(19)
C=B-A (20)
dian(B-A) ; 1 f
median(A) median(B) median(B-A) 5 p value o
signtest
‘other rewards’ spike trains, median method 0 0 0;p=0.6301
‘other rewards’ spike trains, quadratic method 0.8664 0 -0.0973 ; p = 2.6338 10795
‘15, reward’ spike trains, median method 0 0 0;p=0.4437
‘15 reward’ spike trains, quadratic method 1.1003 0.804 0;p=0.0984

Table 26: ¢ = 0: Increase in the distance of spike trains coming from categories indicated in the rows to
categories indicated in the column, and comparison of the increase to category 'other rewards’ vs to category
first reward’ when k is increased from 0 to kopt ot g—0-

A final analysis was conducted to try to understand why, at best temporal cost g, the increase in the distance
was so small when k was increased for the intra—category ‘subsequent rewards’ distance. The number of spikes
was smaller in this category (table 27, page 66), which probably decreased the likelihood that two spikes from
two different neurons would be close enough to be matched when comparing two spike trains from this category.
In contrast, this likelihood increased when comparing a spike train from the ‘subsequent reward’ category to
a spike train from the "first reward’ category, which contains more spikes; as a consequence, weighting neural
identity can have a stronger impact on the distance. Finally, when comparing two first reward spike trains, as
the number of spikes is important, there would be a big probability of ‘mixing spikes’ by chance, but as the
firing of the ‘best cell’ is supposed to be rather precise and as the timing of spikes is weighted, it is probable
that even at k£ = 0 the responses would not be very mixed, resulting in a medium increase in the distance for
higher ks.

‘best cells’ ‘worst cells’
median = 4.6526 ; | median = 2.1297 ;
¢ h P -k . . h b 2
other rewards’ spike trains, median method mean — 44876 mean — 3.5173
median = 4.0552 ; | median = 1.5128 ;
‘oth ds’ spike trains, quadrati thod
other rewards’ spike trains, quadratic metho mean — 46817 mean — 3.4956
di = 6.5364 ; di = 27222 ;
‘14 reward’ spike trains, median method meaan meaan
mean = 8.0301 mean = 4.1435
di = 6.2727 ; di = 23333 ;
‘15 reward’ spike trains, quadratic method rmeanan rmearan
mean = 7.9969 mean = 4.0582

Table 27: For the longer analysis window, spike mean and median spike count reported separately for ‘best
discriminating cells’, ‘worst discriminating cells’, and for the two categories.
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