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gediminas.luksys@epfl.ch
Jérémie Knüsel1
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Abstract

Stress and genetic background regulate different aspects of behavioral learning
through the action of stress hormones and neuromodulators.In reinforcement
learning (RL) models, meta-parameters such as learning rate, future reward dis-
count factor, and exploitation-exploration factor, control learning dynamics and
performance. They are hypothesized to be related to neuromodulatory levels in
the brain. We found that many aspects of animal learning and performance can be
described by simple RL models usingdynamic control of the meta-parameters. To
study the effects of stress and genotype, we carried out 5-hole-box light condition-
ing and Morris water maze experiments with C57BL/6 and DBA/2mouse strains.
The animals were exposed to different kinds of stress to evaluate its effects on
immediate performance as well as on long-term memory. Then,we used RL mod-
els to simulate their behavior. For each experimental session, we estimated a set
of model meta-parameters that produced the best fit between the model and the
animal performance. The dynamics of several estimated meta-parameters were
qualitatively similar for the two simulated experiments, and with statistically sig-
nificant differences between different genetic strains andstress conditions.

1 Introduction

Animals choose their actions based on reward expectation and motivational drives. Different aspects
of learning are known to be influenced by acute stress [1, 2, 3]and genetic background [4, 5]. Stress
effects on learning depend on the stress type (eg task-specific or unspecific) and intensity, as well
as on the learning paradigm (eg spatial/episodic vs. procedural learning) [3]. It is knownthat
stress can affect short- and long-term memory by modulatingplasticity through stress hormones
and neuromodulators [1, 2, 3, 6]. However, there is no integrative model that would accurately
predict and explain differential effects of acute stress. Although stress factors can be described in
quantitative measures, their effects on learning, memory,and performance are strongly influenced
by how an animal perceives it. The subjective experience canbe influenced by emotional memories
as well as by behavioral genetic traits such as anxiety, impulsivity, and novelty reactivity [4, 5, 7].



In the present study, behavioral experiments conducted on two different genetic strains of mice
and under different stress conditions were combined with a modeling approach. In our models,
behavioral performance as a function of time was described in the framework of temporal difference
reinforcement learning (TDRL).

In TDRL models [8] a modeled animal, termedagent, can occupy various states and undertake
actions in order to acquire rewards. The expected values of cumulative future reward (Q-values) are
learned by observing immediate rewards delivered under different state-action combinations. Their
update is controlled by certain meta-parameters such as learning rate, future reward discount factor,
and memory decay/interference factor. The Q-values (together with the exploitation/exploration
factor) determine what actions are more likely to be chosen when the animal is at a certain state,
ie they represent the goal-oriented behavioral strategy learned by the agent. The activity of certain
neuromodulators in the brain are thought to be associated with the role the meta-parameters play
in the TDRL models. Besides dopamine (DA), whose levels are known to be related to the TD
reward prediction error [9], serotonin (5-HT), noradrenaline (NA), and acetylcholine (ACh) were
discussed in relation to TDRL meta-parameters [10]. Thus, the knowledge of the characteristic
meta-parameter dynamics can give an insight into the putative neuromodulatory activities in the
brain. Dynamic parameter estimation approaches, recentlyapplied to behavioral data in the context
of TDRL [11], could be used for this purpose.

In our study, we carried out 5-hole-box light conditioning and Morris water maze experiments with
C57BL/6 and DBA/2 inbred mouse strains (referred to as C57 and DBA from now on), renown for
their differences in anxiety, impulsivity, and spatial learning [4, 5, 12]. We exposed subgroups of
animals to different kinds of stress (such as motivational stress or task-specific uncertainty) in order
to evaluate its effects on immediate performance, and also tested their long-term memory after a
break of 4-7 weeks. Then, we used TDRL models to describe the mouse behavior and established
a number of performance measures that are relevant to task learning and memory (such as mean
response times and latencies to platform) in order to compare the outcome of the model with the an-
imal performance. Finally, for each experimental session we ran an optimization procedure to find
a set of the meta-parameters, best fitting to the experimental data as quantified by the performance
measures. This approach made it possible to relate the effects of stress and genotype to differences
in the meta-parameter values, allowing us to make specific inferences about learning dynamics (gen-
eralized over two different experimental paradigms) and their neurobiological correlates.

2 Reinforcement learning model of animal behavior

In the TDRL framework [8] animal behavior is modelled as a sequence of actions. After an action is
performed, the animal is in a new state where it can again choose from a set of possible actions. In
certain states the animal is rewarded, and the goal of learning is to choose actions so as to maximize
the expected future reward, orQ-value, formally defined as

Q(st, at) = E

( ∞
∑

k=0

γkrt+k+1|st, at

)

, (1)

where(st, at) is the state-action pair,rt is a reward received at time stept and 0 < γ < 1 is
the future reward discount factorwhich controls to what extent the future rewards are taken into
account. As soon as statest+1 is reached and a new action is selected, the estimate of the previous
state’s valueQ(st, at) is updated based on the reward prediction errorδt [8]:

δt = rt+1 + γQ(st+1, at+1)−Q(st, at) , (2)

Q(st, at)← Q(st, at) + αδt , (3)
whereα is the learning rate. The action selection at each state is controlled by theexploitation
factorβ such that actions with high Q-values are chosen more often iftheβ is high, whereas random
actions are chosen most of the time if theβ is close to zero. Meta-parametersα, β andγ are the free
parameters of the model.

3 5-hole-box experiment and modeling

Experimental subjects were male mice (24 of the C57 strain, and 24 of the DBA strain), 2.5-month
old at the beginning of the experiment, and food deprived to 85-90% of the initial weight. During an



experimental session, each animal was placed into the 5-hole-box (5HB) (Figure 1a). The animals
had to learn to make a nose poke into any of the holes upon the onset of lights and not to make it
in the absence of light. After the response to light, the animals received a reward in form of a food
pellet. Once a poke was initiated (seestarting a pokein Figure 1b), the mouse had to stay in the
hole at least for a short time (0.3-0.5 sec) in order to find thedelivered reward (continuing a poke).
Trial ended (lights turned off) as soon as the nose poke was finished. If the mouse did not find the
reward, the reward remained in the box and the animal could find it during the next poke in the same
box. The inter-trial interval (ITI) between subsequent trials was 15 sec. However, a new trial could
only start when during the last 3 sec before it there were no wrong (ITI) pokes, so as to penalize
spontaneous poking. The total session time was 10 min. Hence, the number of trials depended on
how fast animals responded to light and how often they made ITI pokes.

B.1 B.2 B.3 B.4 B.5

Trial, continuing a poke

Trial, starting a poke

Trial, staying outside

ITI, starting a poke

ITI, continuing a poke

ITI, staying outside

a. b. Trial starts after 15 sec. ITI 

RewardReward (if available)

Figure 1:a. Scheme of the 5HB experiment. Open circles are the holes where the food is delivered,
filled circles are the lights. All 5 holes were treated as equivalent during the experiment.b. 5HB
state-action chart. Rectangles are states, arrows are actions.

After 2 days of habituation, during which the mice learned that food could be delivered in the
holes, they underwent 8 consecutive days of training. During days 5-7 subsets of the animals were
exposed to different stress conditions: motivational stress (MS, food deprivation to 85-87% of the
initial weight vs. 88-90% in controls) and uncertainty in the reward delivery (US, in 50% of correct
responses they received either none or 2 food pellets). Miceof each strain were divided into 4 stress
groups: controls, MS, US, and MS+US. After a break of 26 days the long-term memory of the
mice was tested by retraining them for another 8 days. Duringdays 5-8 of the retraining, we again
evaluated the impact of stress factors by exposing half of the mice to extrinsic stress (ES, 30 min on
an elevated platform right before the 5HB experiment).

To model the mouse behavior we used a discrete state TDRL model with 6 states: [ITI, trial ] ×
[staying outside, starting a poke, continuing a poke], and 2 actions:move(in or out), andstay(see
Figure 1b). Actions were chosen according to the soft-max method [8]:

p(a|s) = exp(βQ(s, a))/
∑

k

exp(βQ(s, ak)) , (4)

wherek runs over all actions andβ is the exploitation factor. Initial Q-values were equal to zero.
Since the time spent outside the holes was comparatively long and included multiple (task irrelevant)
actions, state/action pairstaying outside/staywas given much more weight in the above formula.
The time step (0.43 sec) was constant throughout the experiment and was chosen to fit the animal
performance in thebeginningof the experiment. Finally, to account for the memory decay after each
day allQ(s, a) values were updated as follows:

Q(s, a)← Q(s, a) · (1− λ) + 〈Q(s, a)〉s,a · λ , (5)

whereλ is a memory decay/interference factor, and〈Q(s, a)〉s,a is the average over Q values for all
states and all actions at the end of the day.

All performance measures (PMs) used in the 5HB paradigm (number of trials, number of ITI pokes,
mean response time, mean poke length,TimePref1 and LengthPref2) were evaluated over the
entire session (10 min, 1400 time steps), during which different states3 could be visited multiple

1TimePref = (average time between adjacent ITI pokes) / (average response time)
2LengthPref = (average response length) / (average ITI poke length)
3including the pseudo-states, corresponding to time steps within the 15 sec ITI



times. As opposed to an online ”SARSA”-type update of Q-values, we work with state occupancy
probabilitiesp(st) and update Q-values with the following reward prediction error:

δt = E[rt]−Q(at, st) + γ
∑

∀at+1,st+1

Q(at+1, st+1) · p(at+1, st+1|at, st) . (6)

4 Morris water maze experiment and modeling

The same mice as in the 5HB (4.5-month old at the beginning of the experiment) were tested in a
variant of the Morris water maze (WM) task [13]. Starting fromone of 4 starting positions in the
circular pool filled with an opaque liquid they had to learn the location of a hidden escape platform
using stable extra-maze cues (Fig. 2a). Animals were initially trained for 4 days with 4 sessions a
day (to avoid confusion with 5HB, we consider each WM session consisting of only one trial). Trial
length was limited to 60s, and the inter-session interval was 25 min.). Half of the mice had to swim
in cold water of 19◦C (motivational stress, MS), while the rest were learning at26◦C (control).

After a 7-week break, 3-day long memory testing was done at 22-23◦C for all animals. Finally,
after another 2 weeks, the mice performed the task for 5 more days: half of them did a version with
uncertainty stress (US), where the platform location was randomly varying between the old position
and its rotationally opposite; the other half did the same task as before.

Behavior was quantified using the following 4 PMs: time to reach the goal (escape latency), time
spent in the target platform quadrant, the opposite platform quadrant, and in the wall region (Fig. 2a).
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Figure 2: WM experiment and model.a. Experimental setup.1 – target platform quadrant,2 –
opposite platform quadrant,3 – wall region. Small filled circles mark 4 starting positions, large
filled circle marks the target platform, open circle marks the opposite platform (used only in the US
condition), pool∅ = 1.4m. b. Activities of place cells (PC) encode position of the animalin the
WM, activities of action cells encode direction of the next movement.

A TDRL paradigm (1)-(3) in continuous state and action spaces has been used to model the mouse
behavior in the WM [14, 15]. The position of the animal is represented as a population activity of
Npc = 211 ’place cells’ (PC) whose preferred locations are distributed uniformly over the area of a
modelled circular arena (Fig. 2b). Activity of place cellj is modelled by a Gaussian centered at the
preferred location~pj of the cell:

rpc
j = exp(−‖~p− ~pj‖

2/2σ2
pc) , (7)

where~p is the current position of the modelled animal andσpc = 0.25 defines the width of the
spatial receptive field relative to the pool radius. Place cells project to the population ofNac = 36
’action cells’ (AC) via feed-forward all-to-all connections with modifiable weights. Each action cell
is associated with angleφi, all φi being distributed uniformly in[0, 2π]. Thus, an activity profile on
the level of place cells (i.e. statest) causes a different activity profile on the level of the action cells
depending on the value of the weight vector. The activity of action celli is considered as thevalue
of the action (defined as a movement in directionφi

4):

Q(st, at) = rac
i =

∑

j

wijr
pc
j . (8)

4A constant step length was chosen to fit the average speed of the animals during the experiment



The action selection followsε-greedy policy, where the optimal actiona∗ is chosen with probability
β = 1 − ε and a random action with probability1 − β. Action a∗ is defined as movement in the
direction of the center of massφ∗ of the AC population5. Q-value corresponding to an action with
continuous angleφ is calculated as linear interpolation between activities of the two closest action
cells. During learning the PC→AC connection weights are updated on each time step in such a way
as to decrease the reward prediction errorδt (3):

∆wij = αδrac
i rpc

j . (9)
The Hebbian-like form of the update rule (9) is due to the factthat we use distributed representations
for states and actions, i.e. there is no single state/actionpair responsible for the last movement.

To simulate one experimental session it is necessary to (i) initialize the weight matrix{wij}, (ii )
choose meta-parameter values and starting position~p0, (iii ) compute (7)-(8) and perform corre-
sponding movements until‖~p − ~ppl‖ < Rpl at which point rewardr = 15 is delivered (Rpl is the
platform radius). Wall hits result in a small negative reward (rwall = −3).

For each session and each set of the meta-parameters, 48 different sets of random initial weightswij

(corresponding to individual mice) were used to run the model, with 50 simulations started out of
each set. Final values of the PMs were averaged over all repetitions for each subgroup of mice.

To account for the loss of memory, after each day all weights were updated as follows:

wnew
ij = wold

ij · (1− λ) + winitial
ij · λ (10)

whereλ is the memory decay factor,wold
ij is the weight value at the end of the day, andwinitial

ij is
the initial weight value before any learning took place.

5 Goodness-of-fit function and optimization procedure

To compare the model with the experiment we used the following goodness-of-fit function [16]:

χ2 =

NPM
∑

k=1

(PMexp

k − PMmod
k (α, β, γ, λ))2/(σexp

k )2 , (11)

wherePMexp

k andPMmod
k are the PMs calculated for the animals and the model, respectively and

NPM is the number of the PMs.PMmod
k (α, β, γ, λ) are calculated after simulation of one session

with fixed values of the meta-parameters.PMexp

k were calculated either for each animal (5HB),
or for each subgroup (WM). Using stochastic gradient ascent,we minimized (11) with respect to
α, β, γ for each session separately by systematically varying the meta-parameters in the following
ranges: for WM,α ∈ [10−5, 5 · 10−2] andβ, γ ∈ [0.01, 0.99], and for 5HB,α, γ ∈ [0.03, 0.99] and
β ∈ [0.3, 9.9]. Decay factorλ ∈ [0.01, 0.99] was estimated only for the first session after the break,
otherwise constant values ofλ = 0.03 (5HB) andλ = 0.2 (WM) were used.

Several control procedures were performed to ensure that the meta-parameter optimization was sta-
tistically efficient and self-consistent. To evaluate how well the model fits the experimental data we
usedχ2-test withν = NPM − 3 degrees of freedom (since most of the time we had only3 free
meta-parameters). TheP (χ2, ν) value, defined as the probability that a realization of a chi-square-
distributed random variable would exceedχ2 by chance, was calculated for each session separately.
Generally, values ofP (χ2, ν) > 0.01 correspond to a fairly good model [16]. To check reliability
of the estimated meta-parameters we used the same optimization procedure withPMexp

k artificially
generated by the model itself. In a self-consistent model such a procedure is expected to find meta-
parameter values similar to those with which the PMs were generated. Finally, to see how well
the model generalizes to previously unseen data, we used half of the available experimental data
for optimization and tested the estimated parameters on theother half. Then we evaluatedχ2 and
P (χ2, ν) values for the testing as well as the training data.

6 Results

The meta-parameter estimation procedure was performed forthe models of both experiments using
stochastic gradient ascent inχ2 goodness-of-fit. For the 5HB, meta-parameters were estimated for

5i.e. φ∗ = arctan(
∑

i
rac

i sin(2πk/Nac)/
∑

i
rac

i cos(2πk/Nac))
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Figure 3:a. Example of PM evolution with learning in the WM (platform quadrant time, top) and in
the 5HB (mean response time, bottom).b. Self-consistency check: true (open circles) and estimated
(filled circles) meta-parameter values for the 24 random sets in the 5HB

each animal and each experimental day. Further (sub)group values were calculated by averaging
the individual estimations. For the WM, meta-parameters were estimated for each subgroup and
each experimental session. Learning dynamics in both experiments are illustrated in Figure 3a for
2 representative PMs, where average performances for all mice and the corresponding models (with
estimated meta-parameters) are shown.

The results of both meta-parameter estimation procedures indicated a reasonably good fit between
the model and animal performance. Evaluating the testing data, the conditionP (χ2, ν) > 0.01 was
satisfied for 92.5% of 5HB estimated parameter sets, and for 98.4% in the WM. The meanχ2 values
for the testing data were〈χ2〉 = 1.59 in the WM (P (χ2, 1) = 0.21) and〈χ2〉 = 5.27 in the 5HB
(P (χ2, 3) = 0.15). There was a slight over-fitting only in the WM estimation.

To evaluate the quality of the estimated optima and sensitivities to different meta-parameters, we
calculated eigenvalues of the Hessian of1/χ2 around each of the estimated points. 98.4% of all
eigenvalues were negative, and most of the corresponding eigenvectors were aligned with the direc-
tions ofα, β, andγ, indicating that there were no significant correlations in parameter estimation.
Furthermore, the absolute eigenvalues were highest in the directions ofβ andγ, thus the error sur-
face is steep along these meta-parameters. To test the reliability of estimated meta-parameters, the
self-consistency check was performed using a number of random meta-parameter sets. The mean
absolute errors (distances between real and estimated parameter values) were quite small for ex-
ploitation factors (β) – approximately 6% of the total range, but higher for the reward discount
factors (γ) and for the learning rates (α) – 10-29% of the total range (Figure 3b). This indicates that
estimatedβ values should be considered more reliable than those ofα andγ.

6.1 Meta-parameter dynamics

During the course of learning, exploitation factors (β) (Figure 4a,b) showed progressive increase
(regressionp� 0.001 for both the 5HB and the WM), reaching the peak at the end of eachlearning
block. They were consistently higher for the C57 mice than for the DBA mice (2-way ANOVA with
replications,p � 0.001 for both experiments), indicating that the DBA mice were exploring the
environment more actively, and/or were not able to focus their attention well on the specific task.
Finally, C57 mouse groups, exposed to motivational stress in the WM and to extrinsic stress in the
5HB, had elevated exploitation factors (ANOVAp < 0.01 for both experiments), however there was
no effect for the DBA mice.

The estimated learning rates (α) did not show any obvious changes or trends with learning for
either 5HB or WM. There were no differences between the 2 genetic strains (nor among the stress
conditions) with one exception: for the first several days ofthe training, C57 learning rates were
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Figure 4:a,b. Estimated exploitation factorsβ for 5HB (a, break is between days 8 & 9) and WM (b,
breaks between days 4 & 5 and between 7 & 8).c,d. Estimated future reward deference factors for
the variable platform trials in the WM (c) and for the uncertainty trials in the 5HB (d). e. Estimated
memory decay / interference factors for the first day after the break in the 5HB.

significantly higher (ANOVAp < 0.01 in both experiments), indicating that C57 mice could learn a
novel task more quickly.

Under uncertainty (in reward delivery for the 5HB, and in thetarget platform location for the WM)
future reward discount factors (γ) were significantly elevated (ANOVAp < 0.02, Figure 4c,d). In
the 5HB, memory decay factors (λ), estimated for the first day after the break, were significantly
higher (p < 0.01, unpaired t-test) for animals, previously exposed to uncertainty (Figure 4e). This
suggests that uncertainty makes animals consider rewards further into the future, and it seems to
impair memory consolidation.

7 Discussion

In this paper we showed that various behavioral outcomes (caused by genetic traits and/or stress
factors) could be predicted by our TDRL models for 2 different tasks. This provides hypotheses
concerning the neuromodulatory mechanisms, which we plan to test using pharmacological manip-
ulations (typically, injections of agonists or antagonists of relevant neurotransmitter systems).

Results for the exploitation factors suggest that with learning (and decreasing reward prediction
errors) the acquired knowledge is used more for choosing actions. This might also be related to
decreased subjective stress and higher stressor controllability. The difference between C57 and DBA
strains shows two things. Firstly, the anxious DBA mice cannot exploit their knowledge as well as
C57 can. Secondly, in response to motivational or extrinsicstress C57 mice are the only ones that
increase their exploitation. This may be related to an inverse-U-shaped effect of the noradrenergic
influences on focused attention and performance accuracy [17]. Animals with low anxiety (C57)
might be on the left side of the curve, and additional stress might lead them to optimal performance,
while those with high anxiety – already on the right side, leading to possibly impaired performance.
Our results may also suggest that the widely proclaimed deficiency of DBA mice in spatial learning
(as compared to C57) [4, 12] might be primarily due to differential attentional capabilities.

The increased future reward discount factors under uncertainty indicate a reasonable adaptive re-
sponse – animals should not concentrate their learning on immediate events when task-reward rela-



tions become ambiguous. Uncertainty in behaviorally relevant outcomes under stress causes a de-
crease in subjective stressor controllability, which is known to be related to elevated serotonin levels
[18]. Higher memory decay / interference factors for the animals previously exposed to uncertainty
could be due to partially impaired memory consolidation and/or due to stronger competition between
different strategies and perceptions of the uncertain task.

Although estimated meta-parameter values can be easily compared between certain experimental
conditions, it is difficult to study in this way the interactions between different genetic and environ-
mental factors or extrapolate beyond the limits of available conditions. One could overcome this
disadvantage by developing a black-box parameter model that would help us to evaluate in a flexible
way the contributions of specific factors (motivation, uncertainty, genotype) to meta-parameter dy-
namics, as well as their relationship with dynamics of TD errors (δt) during the process of learning.
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