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Abstract

Stress and genetic background regulate different aspédishavioral learning
through the action of stress hormones and neuromodulatarseinforcement
learning (RL) models, meta-parameters such as learnieg fiature reward dis-
count factor, and exploitation-exploration factor, cohtearning dynamics and
performance. They are hypothesized to be related to neutolatory levels in
the brain. We found that many aspects of animal learning an@pnance can be
described by simple RL models usidgnamic control of the meta-parametei®
study the effects of stress and genotype, we carried outéstax light condition-
ing and Morris water maze experiments with C57BL/6 and DB&se strains.
The animals were exposed to different kinds of stress touatalits effects on
immediate performance as well as on long-term memory. TWermused RL mod-
els to simulate their behavior. For each experimental sesgie estimated a set
of model meta-parameters that produced the best fit betvimemodel and the
animal performance. The dynamics of several estimated-pameters were
qualitatively similar for the two simulated experimentsgawith statistically sig-
nificant differences between different genetic strainsstreks conditions.

1 Introduction

Animals choose their actions based on reward expectatibmativational drives. Different aspects
of learning are known to be influenced by acute stress [1, 2n8]genetic background [4, 5]. Stress
effects on learning depend on the stress tygaetdsk-specific or unspecific) and intensity, as well
as on the learning paradigned spatial/episodic vs. procedural learning) [3]. It is knotrat
stress can affect short- and long-term memory by modulailagticity through stress hormones
and neuromodulators [1, 2, 3, 6]. However, there is no imtidgg model that would accurately
predict and explain differential effects of acute stres#hdugh stress factors can be described in
guantitative measures, their effects on learning, menaorg, performance are strongly influenced
by how an animal perceives it. The subjective experiencebeanfluenced by emotional memories
as well as by behavioral genetic traits such as anxiety, ishpty, and novelty reactivity [4, 5, 7].



In the present study, behavioral experiments conductedvondifferent genetic strains of mice
and under different stress conditions were combined withodating approach. In our models,
behavioral performance as a function of time was describéuk framework of temporal difference
reinforcement learning (TDRL).

In TDRL models [8] a modeled animal, termadent can occupy various states and undertake
actions in order to acquire rewards. The expected valuesrobitative future reward (Q-values) are
learned by observing immediate rewards delivered undéerdiit state-action combinations. Their
update is controlled by certain meta-parameters such asgngeaate, future reward discount factor,
and memory decay/interference factor. The Q-values (bagewith the exploitation/exploration
factor) determine what actions are more likely to be choskanithe animal is at a certain state,
ie they represent the goal-oriented behavioral strategyéehby the agent. The activity of certain
neuromodulators in the brain are thought to be associatddtie role the meta-parameters play
in the TDRL models. Besides dopamine (DA), whose levels a@vk to be related to the TD
reward prediction error [9], serotonin (5-HT), noradrémal(NA), and acetylcholine (ACh) were
discussed in relation to TDRL meta-parameters [10]. Thius,knowledge of the characteristic
meta-parameter dynamics can give an insight into the petatturomodulatory activities in the
brain. Dynamic parameter estimation approaches, recapgiiied to behavioral data in the context
of TDRL [11], could be used for this purpose.

In our study, we carried out 5-hole-box light conditioningdaMorris water maze experiments with
C57BL/6 and DBA/2 inbred mouse strains (referred to as CS/RRBA from now on), renown for
their differences in anxiety, impulsivity, and spatialieiag [4, 5, 12]. We exposed subgroups of
animals to different kinds of stress (such as motivatiotraks or task-specific uncertainty) in order
to evaluate its effects on immediate performance, and alsted their long-term memory after a
break of 4-7 weeks. Then, we used TDRL models to describe thesenbehavior and established
a number of performance measures that are relevant to tagking and memory (such as mean
response times and latencies to platform) in order to coenber outcome of the model with the an-
imal performance. Finally, for each experimental sessierran an optimization procedure to find
a set of the meta-parameters, best fitting to the experirhéata as quantified by the performance
measures. This approach made it possible to relate thasfestress and genotype to differences
in the meta-parameter values, allowing us to make specfficances about learning dynamics (gen-
eralized over two different experimental paradigms) amir theurobiological correlates.

2 Reinforcement learning model of animal behavior

In the TDRL framework [8] animal behavior is modelled as asatge of actions. After an action is
performed, the animal is in a new state where it can againsghffom a set of possible actions. In
certain states the animal is rewarded, and the goal of legiigito choose actions so as to maximize
the expected future reward, @-value formally defined as

oo
Qs a) = E(Z Veresrpalse, at) ; 1)
k=0
where (s¢,a;) is the state-action pair; is a reward received at time ste@and0 < v < 1is
the future reward discount factowhich controls to what extent the future rewards are takém in
account. As soon as statg,; is reached and a new action is selected, the estimate of éhps
state’s valu&)(s;, a;) is updated based on the reward prediction efr¢8]:

0p = rep1 +YQ(Se41, ae41) — Q545 ae) (2)

Q(st; ar) < Q(s1,ar) + ady 3)
where« is thelearning rate The action selection at each state is controlled byetk@oitation
factor 5 such that actions with high Q-values are chosen more oftée if is high, whereas random

actions are chosen most of the time if fhés close to zero. Meta-parameterss and~ are the free
parameters of the model.

3 5-hole-box experiment and modeling

Experimental subjects were male mice (24 of the C57 straich,24 of the DBA strain), 2.5-month
old at the beginning of the experiment, and food deprivebt®8% of the initial weight. During an



experimental session, each animal was placed into the&sdmt (5HB) (Figure 1a). The animals
had to learn to make a nose poke into any of the holes upon #et ohlights and not to make it
in the absence of light. After the response to light, the afsmeceived a reward in form of a food
pellet. Once a poke was initiated (s&@rting a poken Figure 1b), the mouse had to stay in the
hole at least for a short time (0.3-0.5 sec) in order to finddélésered rewarddontinuing a pokke
Trial ended (lights turned off) as soon as the nose poke weshéd. If the mouse did not find the
reward, the reward remained in the box and the animal couddtfaluring the next poke in the same
box. The inter-trial interval (ITl) between subsequerdliwas 15 sec. However, a new trial could
only start when during the last 3 sec before it there were reng/(ITI) pokes, so as to penalize
spontaneous poking. The total session time was 10 min. Hémeaumber of trials depended on
how fast animals responded to light and how often they matlpdies.

a. b. Trial starts after 15 sec. ITI

B1 B2 B3 B4 BS5

‘ ITI, staying outside \>1 Trial, staying outside ‘

‘ ITI, starting a poke ‘ Trial, starting a poke ‘
‘_’ [Reward (if available) | Reward
. ‘ ITI, continuing a poke Trial, continuing a poke ‘

Figure 1:a. Scheme of the 5HB experiment. Open circles are the holesatherfood is delivered,
filled circles are the lights. All 5 holes were treated as egjent during the experimenb. 5HB
state-action chart. Rectangles are states, arrows aomscti

After 2 days of habituation, during which the mice learnedttfood could be delivered in the
holes, they underwent 8 consecutive days of training. Qudislys 5-7 subsets of the animals were
exposed to different stress conditions: motivationalssti@dlS, food deprivation to 85-87% of the
initial weight vs. 88-90% in controls) and uncertainty i tleward delivery (US, in 50% of correct
responses they received either none or 2 food pellets). dieach strain were divided into 4 stress
groups: controls, MS, US, and MS+US. After a break of 26 déagslong-term memory of the
mice was tested by retraining them for another 8 days. Dutays 5-8 of the retraining, we again
evaluated the impact of stress factors by exposing halfeofiitte to extrinsic stress (ES, 30 min on
an elevated platform right before the 5SHB experiment).

To model the mouse behavior we used a discrete state TDRL Imgithe6 states: [TI, trial] x
[staying outsidestarting a pokecontinuing a pokg and 2 actionsmove(in or out), andstay(see
Figure 1b). Actions were chosen according to the soft-mathote[8]:

plals) = exp(8Q(s, @)/ Y exp(BQ(s, ax)) (4)
k

wherek runs over all actions and is the exploitation factor. Initial Q-values were equal &v@
Since the time spent outside the holes was comparativelydad included multiple (task irrelevant)
actions, state/action pagtaying outsidéstaywas given much more weight in the above formula.
The time step (0.43 sec) was constant throughout the expetiand was chosen to fit the animal
performance in theeginningof the experiment. Finally, to account for the memory dedtsr&ach
day allQ(s, a) values were updated as follows:

Q(s,a) — Q(s,a) - (1= X)) +(Q(s,a))s,0 - A , (5)

where) is a memory decay/interference factor, dills, a)), . is the average over Q values for all
states and all actions at the end of the day.

All performance measures (PMs) used in the 5HB paradigm leurmf trials, number of ITI pokes,
mean response time, mean poke lengthpnePref! and LengthPref?) were evaluated over the
entire session (10 min, 1400 time steps), during which wifie state$ could be visited multiple

ITimePref = (average time between adjacent ITI pokes) / (average responge time
2LengthPref = (average response length) / (average ITI poke length)
3including the pseudo-states, corresponding to time steps within the 15Isec IT



times. As opposed to an online "SARSA"-type update of Q-gaJuwe work with state occupancy
probabilitiesp(s;) and update Q-values with the following reward predictiamer

o = E[Tt] - Q(a’ta St) +7 Z Q(at+175t+1) 'p(at+175t+1|at75t) . (6)

Vait1,8t+1

4 Morris water maze experiment and modeling

The same mice as in the 5HB (4.5-month old at the beginningetkperiment) were tested in a
variant of the Morris water maze (WM) task [13]. Starting frame of 4 starting positions in the
circular pool filled with an opaque liquid they had to leara thcation of a hidden escape platform
using stable extra-maze cues (Fig. 2a). Animals were liyitienined for 4 days with 4 sessions a
day (to avoid confusion with 5HB, we consider each WM sessansisting of only one trial). Trial
length was limited to 60s, and the inter-session interva 8&min.). Half of the mice had to swim
in cold water of 19C (motivational stress, MS), while the rest were learning@tC (control).

After a 7-week break, 3-day long memory testing was done €22¢ for all animals. Finally,
after another 2 weeks, the mice performed the task for 5 mays:dhalf of them did a version with
uncertainty stress (US), where the platform location wadwoanly varying between the old position
and its rotationally opposite; the other half did the sans& tes before.

Behavior was quantified using the following 4 PMs: time tocte¢he goal (escape latency), time
spentin the target platform quadrant, the opposite platfpuadrant, and in the wall region (Fig. 2a).

Figure 2: WM experiment and modeh. Experimental setupl — target platform quadrang —
opposite platform quadran8 — wall region. Small filled circles mark 4 starting positiptarge
filled circle marks the target platform, open circle marke dpposite platform (used only in the US
condition), poolz = 1.4m. b. Activities of place cells (PC) encode position of the aninmathe
WM, activities of action cells encode direction of the nextvament.

A TDRL paradigm (1)-(3) in continuous state and action spdwes been used to model the mouse
behavior in the WM [14, 15]. The position of the animal is regmated as a population activity of
Ny = 211 ’place cells’ (PC) whose preferred locations are distedutniformly over the area of a
modelled circular arena (Fig. 2b). Activity of place cgls modelled by a Gaussian centered at the
preferred locatiom; of the cell:

rP = exp(—[l5 - 5;]2/202) 0

wherep' is the current position of the modelled animal ang = 0.25 defines the width of the
spatial receptive field relative to the pool radius. Pladks gegoject to the population aV,. = 36
'action cells’ (AC) via feed-forward all-to-all connectie with modifiable weights. Each action cell
is associated with anglg;, all ¢; being distributed uniformly ifi0, 27]. Thus, an activity profile on
the level of place cells (i.e. statg) causes a different activity profile on the level of the aciiells
depending on the value of the weight vector. The activityaifom celli is considered as thealue
of the action (defined as a movement in directigf):

Qlstya) = =3 wiyr® . ®
J

“4A constant step length was chosen to fit the average speed of the animatsttie experiment



The action selection followsgreedy policy, where the optimal actian is chosen with probability

8 = 1 — e and a random action with probability— 5. Action a* is defined as movement in the
direction of the center of mags of the AC populatiod. Q-value corresponding to an action with
continuous angle is calculated as linear interpolation between activitiethe two closest action
cells. During learning the PEGAC connection weights are updated on each time step in sueya w
as to decrease the reward prediction ef;di3):

Awi; = adrir?® . 9)
The Hebbian-like form of the update rule (9) is due to the fhat we use distributed representations

for states and actions, i.e. there is no single state/apagrresponsible for the last movement.

To simulate one experimental session it is necessari) ini(alize the weight matrix{w;; }, (i)
choose meta-parameter values and starting posifioriiii) compute (7)-(8) and perform corre-
sponding movements unii’ — ppi|| < Ry at which point reward- = 15 is delivered R, is the
platform radius). Wall hits result in a small negative retvéf,.;, = —3).

For each session and each set of the meta-parameters,&@uiifets of random initial weighis;
(corresponding to individual mice) were used to run the maaigh 50 simulations started out of
each set. Final values of the PMs were averaged over allitiepstfor each subgroup of mice.

To account for the loss of memory, after each day all weiglasewpdated as follows:

Wi = W (1 A)  wlytil .\ (10)

where)\ is the memory decay factow;?}d is the weight value at the end of the day, emi@i“al is
the initial weight value before any learning took place.

5 Goodness-of-fit function and optimization procedure

To compare the model with the experiment we used the follgwimodness-of-fit function [16]:
Npm
X =) (PME® = PM*Y(a, 8,7, 0)%/(077)? (11)
k=1
wherePM; andPM}ﬁnOd are the PMs calculated for the animals and the model, ragplcand

Npy is the number of the PMﬁ?Mg‘Od(a,ﬁ,y, A) are calculated after simulation of one session
with fixed values of the meta-parameteBM; " were calculated either for each animal (5HB),
or for each subgroup (WM). Using stochastic gradient aseseatminimized (11) with respect to
a, 3, for each session separately by systematically varying tha+parameters in the following
ranges: for WMa € [107°,5 - 10~2] and3, v € [0.01,0.99], and for 5HB,«, vy € [0.03,0.99] and

3 €[0.3,9.9]. Decay factor\ € [0.01,0.99] was estimated only for the first session after the break,
otherwise constant values &f= 0.03 (5HB) and\ = 0.2 (WM) were used.

Several control procedures were performed to ensure thah#ta-parameter optimization was sta-
tistically efficient and self-consistent. To evaluate hoellthe model fits the experimental data we
usedy?-test withv = Npy; — 3 degrees of freedom (since most of the time we had Srfiee
meta-parameters). The(x?, ) value, defined as the probability that a realization of asthiare-
distributed random variable would excegtiby chance, was calculated for each session separately.
Generally, values of’(x?,v) > 0.01 correspond to a fairly good model [16]. To check reliability
of the estimated meta-parameters we used the same optonipabcedure wittPM;** artificially
generated by the model itself. In a self-consistent modgh suprocedure is expected to find meta-
parameter values similar to those with which the PMs wereeggad. Finally, to see how well
the model generalizes to previously unseen data, we uséadfhthle available experimental data
for optimization and tested the estimated parameters oottiex half. Then we evaluateg? and
P(x?,v) values for the testing as well as the training data.

6 Results

The meta-parameter estimation procedure was performabdonodels of both experiments using
stochastic gradient ascenty? goodness-of-fit. For the 5HB, meta-parameters were estihfat

%i.e. ¢* = arctan(}, ri°sin(2mk/Nac)/ 3, 72 cos(27k /Nac) )
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Figure 3:a. Example of PM evolution with learning in the WM (platform quadt time, top) and in
the 5HB (mean response time, bottorn) Self-consistency check: true (open circles) and estimated
(filled circles) meta-parameter values for the 24 random isethe 5SHB

each animal and each experimental day. Further (sub)gralues were calculated by averaging
the individual estimations. For the WM, meta-parametersevestimated for each subgroup and
each experimental session. Learning dynamics in both erpats are illustrated in Figure 3a for
2 representative PMs, where average performances for @l amd the corresponding models (with
estimated meta-parameters) are shown.

The results of both meta-parameter estimation procedndésated a reasonably good fit between
the model and animal performance. Evaluating the testite tkee conditionP(x?,v) > 0.01 was
satisfied for 92.5% of 5HB estimated parameter sets, and{de8in the WM. The meag? values
for the testing data werg¢?) = 1.59 in the WM (P(x?2,1) = 0.21) and(x?) = 5.27 in the 5HB
(P(x?,3) = 0.15). There was a slight over-fitting only in the WM estimation.

To evaluate the quality of the estimated optima and seit@tvto different meta-parameters, we
calculated eigenvalues of the Hessianlgk? around each of the estimated points. 98.4% of all
eigenvalues were negative, and most of the correspondijegetctors were aligned with the direc-
tions of «, 3, and~, indicating that there were no significant correlations angmeter estimation.
Furthermore, the absolute eigenvalues were highest initbetidbns of3 and-, thus the error sur-
face is steep along these meta-parameters. To test theiligliaf estimated meta-parameters, the
self-consistency check was performed using a humber oforanteta-parameter sets. The mean
absolute errors (distances between real and estimatethetavalues) were quite small for ex-
ploitation factors §) — approximately 6% of the total range, but higher for theamlvdiscount
factors ) and for the learning rates] — 10-29% of the total range (Figure 3b). This indicates that
estimateds values should be considered more reliable than thoseaofd-y.

6.1 Meta-parameter dynamics

During the course of learning, exploitation factory (Figure 4a,b) showed progressive increase
(regressiom < 0.001 for both the 5HB and the WM), reaching the peak at the end of kehing
block. They were consistently higher for the C57 mice tharifie DBA mice (2-way ANOVA with
replications,p < 0.001 for both experiments), indicating that the DBA mice werelexpg the
environment more actively, and/or were not able to focu# thttention well on the specific task.
Finally, C57 mouse groups, exposed to motivational stresisea WM and to extrinsic stress in the
5HB, had elevated exploitation factors (ANOYA< 0.01 for both experiments), however there was
no effect for the DBA mice.

The estimated learning ratea)(did not show any obvious changes or trends with learning for
either 5HB or WM. There were no differences between the 2 gesttins (nor among the stress
conditions) with one exception: for the first several dayshef training, C57 learning rates were
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memory decay / interference factors for the first day afterttreak in the 5HB.

significantly higher (ANOVAp < 0.01 in both experiments), indicating that C57 mice could learn a
novel task more quickly.

Under uncertainty (in reward delivery for the 5HB, and in target platform location for the WM)
future reward discount factorg ) were significantly elevated (ANOVA < 0.02, Figure 4c,d). In
the 5HB, memory decay factora) estimated for the first day after the break, were signifigan
higher p < 0.01, unpaired t-test) for animals, previously exposed to uad®y (Figure 4e). This
suggests that uncertainty makes animals consider rewartfef into the future, and it seems to
impair memory consolidation.

7 Discussion

In this paper we showed that various behavioral outcomassérhby genetic traits and/or stress
factors) could be predicted by our TDRL models for 2 différeasks. This provides hypotheses
concerning the neuromodulatory mechanisms, which we pléest using pharmacological manip-
ulations (typically, injections of agonists or antagosist relevant neurotransmitter systems).

Results for the exploitation factors suggest that withriesy (and decreasing reward prediction
errors) the acquired knowledge is used more for choosingrect This might also be related to
decreased subjective stress and higher stressor cohilipflarhe difference between C57 and DBA
strains shows two things. Firstly, the anxious DBA mice arexploit their knowledge as well as
C57 can. Secondly, in response to motivational or extrisgiess C57 mice are the only ones that
increase their exploitation. This may be related to an swdy-shaped effect of the noradrenergic
influences on focused attention and performance accuragy Hnimals with low anxiety (C57)
might be on the left side of the curve, and additional streghnhead them to optimal performance,
while those with high anxiety — already on the right sidedlag to possibly impaired performance.
Our results may also suggest that the widely proclaimedidafig of DBA mice in spatial learning
(as compared to C57) [4, 12] might be primarily due to difféia@ attentional capabilities.

The increased future reward discount factors under uringrtendicate a reasonable adaptive re-
sponse — animals should not concentrate their learning orenfiate events when task-reward rela-



tions become ambiguous. Uncertainty in behaviorally maéwutcomes under stress causes a de-
crease in subjective stressor controllability, which isin to be related to elevated serotonin levels
[18]. Higher memory decay / interference factors for thevais previously exposed to uncertainty
could be due to partially impaired memory consolidation/andue to stronger competition between
different strategies and perceptions of the uncertain task

Although estimated meta-parameter values can be easilpa@u between certain experimental
conditions, it is difficult to study in this way the interamtis between different genetic and environ-
mental factors or extrapolate beyond the limits of avadat®nditions. One could overcome this
disadvantage by developing a black-box parameter modeMbad help us to evaluate in a flexible

way the contributions of specific factors (motivation, utamty, genotype) to meta-parameter dy-

namics, as well as their relationship with dynamics of Tes1@,) during the process of learning.
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