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Abstract. An important issue in spatial memory is the learning of abstract rep-
resentations suitable for navigation planning. To address this problem, we have
already developed a planning system inspired by the columnar organization of
the mammalian cortex [1]. This model provides a neuromimetic architecture ca-
pable of learning topological spatial representations and planning goal-directed
actions. The work presented here deals with the ability to encode multiscale rep-
resentations of the environment, in order to solve large maze tasks. This is shown
by validating the model on a multiscale version of the Tolman & Honzik’s detour
task [2]. Simulation results demonstrate that the performances of the planning
system are invariant with respect to the scale of the maze. A series of statistical
analyses is provided to characterise the neural activities subserving spatial plan-
ning. It is shown that the structural properties of the environment are encoded by
the discharges of the location-selective neurones of the model. Complementing
this purely spatial coding, the activity of another class of neurones in the model
integrates both spatial and reward-dependent information suitable for navigation
planning.

1 Introduction

According to experimental evidence, spatial navigation planning is likely to rely on
a distributed neural network spanning limbic and cortical brain structures. This net-
work includes the hippocampus, which mediates spatial representations, and neocorti-
cal structures, such as the prefrontal cortex, which participate to the elaboration of ab-
stract contextual descriptions (e.g., accounting for motivation-dependent memories and
action cost/risk constraints). We have built a columnar cortical model [1] to provide
a neuromimetic architecture suitable for spatial navigation planning, and based on the
interaction between the hippocampus and the prefrontal cortex. The planning process
is based on an activation-diffusion mechanism, propagating reward-related information
from the goal position through the entire topological network [1]. This propagation en-
ables the system to plan action sequences (i.e., trajectories) from the current position
towards the goal. The activation-diffusion mechanism produces an exponential decrease
of the intensity of the goal signal that propagates along the topological graph [1]. To
prevent the system from planning failures in the presence of large scale environments
(where locations exist in which the propagating signal is likely to reach the noise level
and decision taking becomes random) the current model also learns topological repre-
sentations whose resolution is adapted to the complexity of the environment (to account
for structural regularities as corridors).



A review of theoretical discussions on hierarchical cognitive maps can be found in
[3]. McNamara et al. [4] have suggested that human can solve difficult spatial prob-
lems by building a hierarchical cognitive map including multiple representations of the
same environment at different spatial scales. Moreover, animals may be able to chunk
available information and build hierarchical representations to facilitate learning [5–9].
Recently, multiscale spatial representations have been identified at the neural level. For
example in the entorhinal cortex, Hafting et al. [10] have shown that grid cells have
spatial fields forming a grid of variable resolution. Kjelstrup et al. [11] have provided
neural recording of place cell activities in a large maze, supporting the same multiscale
coding property in the hippocampus. In our model, we suggest that this kind of multi-
scale representations should also be found in the neocortical areas such as the prefrontal
cortex, commonly associated with high-level cognitive processes.

2 Methods

2.1 Topological Map Learning and Action Planning with a Column Model

Existing cortical column models (from earlier, e.g. [12, 13], to most recent, e.g. [14])
focus on either the cytoarchitecture of the column or the functional aspect of colum-
nar computation. Our model lies between these two extremes, i.e. it attempts to relate
the columnar organization to the behavioral response based on a bioinspired (highly
simplified) neural network model. The basic components of our column model and its
learning principles have been previously presented [1]. To summarise, an unsupervised
learning scheme is employed to make each column encode a specific spatial location
s ∈ S. Within a column, a set of minicolumns are selective for all the state-action pairs
(s, a1···N ) ∈ S × A experienced by the animat at location s. During navigation plan-
ning, all the minicolumns of a column compete with each other to locally infer the most
appropriate goal-directed action.

Compared to our previous model [1], the columnar structure has been refined in
order to provide a better understanding of the dynamics of the planning system and to
improve its biological plausibility. In the model presented here (Fig. 1A), a column con-
sists of three computational units S, P and V and a set of minicolumns, each of which
consists of two units Q and D. S neurones are meant to encode a compact state-space
representation from the location-selective activities of hippocampal place cells [15].
The simulated place cells provide the system with a continuous distributed and redun-
dant allocentric state-space representation S [16–18]. Q and V neurones are responsible
for encoding respectively the quality (i.e. the efficiency) of an action given a state and
the value of a state regarding its distance to the goal. D neurones integrate spatial and
reward-related information to code for the best local decision in their discharges. P neu-
rones are used to propagate the path signal encoding the plan from a given position to
the goal. The discharge of these units simulates the mean firing activity of a population
of cortical neurones either in supragranular layers II-III (for S, P, V and Q neurones), or
in infragranular layers V-VI (for D neurones).

The planning process mediated by the columnar network (see example in Fig. 1A-B)
is inspired by Burnod’s activation-diffusion mechanism [19]. During trajectory plan-
ning, the unit V of the column corresponding to the goal location is activated via a
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Fig. 1. (A-B) The cortical model and the implementation of the activation-diffusion process.
Columns consist of three supragranular layer units (S, P, V) and a set of minicolumns containing
a supragranular (Q) and an infragranular (D) layer unit. (A) back-propagation of the motivational
signal through the network of Q and V neurones. (B) forward-propagation of the goal-directed
action signal through the P and D neurones. (C) Top-down and bottom-up connections between a
L1 column (bottom) and a L2 column (top). Φ is a modulatory signal indicating variation in the
high level context. (D) Topological connections are also learnt in the L2 network (on this picture,
connections detailed in (C) are summarized by a bidirectional arrow.

motivational signal. Then, this reward-related activity is back-propagated through the
network via the V and Q units (Fig. 1A). Q neurones convey this goal-related infor-
mation to D units, where it is integrated with the spatial information coming from S
and P units. When the back-propagated goal signal reaches the column selective for the
current position s, the D unit becomes active and triggers the forward propagation of a
goal-directed signal through projections wl (Fig. 1B).

Notice that each wu synapse attenuates the back-propagated goal signal. Thus, the
smaller the number of synaptic relays, the stronger the goal signal received by the Q
neurones of the column corresponding to the current location s. Since the receptive
fields of the model columns are distributed uniformly over the environment by the un-
supervised learning scheme [1], the intensity of the goal signal at a location s is roughly
proportional to the distance the the target. Thus, goal-related metrical information is en-
coded implicitly by the network, which is is fundamental in order to select the shortest
pathway to the target.

2.2 Dealing with large scale environments

Let us denote population L1 the previous cortical column population receiving spatial
inputs from the hippocampus. A second population L2 of columns is learnt by the cur-
rent model to encode a large scale map adapted to the size of the environment. The



learning algorithm is based on a measure that can define the boundaries between the
high scale states. Here, we use a very simple mechanism suited for mazes with corri-
dors, but the overall principle remains the same. A signal Φ is introduced to encode
a change in the egocentric locomotion: Φ = 1 when the animat is going straight and
Φ = 0 when it turns. This signal conveys relevant information to extract subpart of cor-
ridors in a maze.L2 columns and minicolumns are the same generic computational units
as in L1 network but they are receiving afferents from L1 columns modulated by the
gating signal Φ (Fig. 1C). This “boundary” signal introduces a locomotion-dependent
bias in the spatial selectivity of S neurones, such that the morphological properties of
the environment (e.g., alleys in a maze) can be encoded by the L2 topological map
explicitly. An unsupervised growing network scheme is being employed to recruit L2

columns similarly to the L1 population. Additional top-down connections are created
from L2 to L1 so that the former population can exert a top-down modulation on the
P and V neurones of the L1 population (Fig. 1C), enabling the planning process at the
level ofL1 to cope with the decreasing back-propagating signal. This is achieved simply
by enhancing the transfer function of P and V units in L1 with a positive factor.

Because the size of high scale states will not be homogeneous as opposed to the
state representation in L1, a more flexible topological learning must be employed to
account for the distance between any state and the goal. To solve this issue, two sets
of bottom-up weights are used to convey the goal-distance information estimated at the
level of the L1 network by the activity of its Q and P units (Fig. 1D). This input is used
to learn the lateral weights wl and wu in the population L2, so that the activity of a V
unit in L2 is correctly correlated with the distance of the high scale to the goal thanks
to the information encoded in L1. In other words, planning computations propagated
at the level of the L1 network are available in the L2 network which uses them to es-
timate correct goal-distance information. Thus there is a bi-directional (bottom-up and
top-down) flow of information between the two populations of columns of the model,
making it possible to encode the environment at multiple scales and to solve large maze
planning tasks.

3 Results

3.1 Spatial Behaviour in a Detour Task

In order to validate our multiscale navigation planning system, we chose the classical
experimental task proposed by Tolman & Honzik [2], as in our previous work [1]. The
main objective of this behavioural protocol was to demonstrate that rodents undergo-
ing a navigation test were able to show some “insights”, e.g. to predict the outcome of
alternative trajectories leading to a goal location in the presence of blocked pathways.
The original Tolman & Honzik’s maze and protocol are shown in Fig. 2A. Here we
extended its principle by using multiple size of the same maze to test the ability of the
model to produce multi-scale topological maps and to solve detour tasks in increas-
ingly larger mazes. Two versions of the Tolman & Honzik’s maze were thus used: the
classical one and a large one which was four times bigger than the original. For their
experiments, Tolman & Honzik used 10 rats with no previous training. In our simula-
tions, we examined three sets of 40 simulated animats solving respectively the classical
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Fig. 2. (A) Tolman & Honzik’s maze (adapted from [2]). The gate near the second intersection
prevented rats from going from right to left. (B-C) Behavioural results for the Tolman & Honzik’s
maze represented as the mean number (averaged over 40 animats) of transits through P2 and P3
during Day 2-14 (A) or Day 15 (B). Several sizes of the maze are used: normal and large (four
time bigger). In the case of normal and large protocol, no multiscale learning was used, unlike in
the large* protocol.

and the large Tolman & Honzik’s protocol. In this series of experiments, the top-down
influence of the L2 was discarded to show how the size of the maze progressively im-
paired the performance of animats in the absence of a compensatory neural adaptation.
We also ran a set of 40 experiments in the large maze allowing the top-down influence
of the high-scale cognitive map over the planning process (large* protocol). Here we
focus on the multiscale aspect of the task, because we have already shown in [1] that
the cortical column could reproduce the original results by Tolman & Honzik’s maze.
We assessed the statistical significance of the results by means of an ANOVA analysis
(the significant threshold was set at 10−2, i.e. p < 0.01 was considered significant).

Day 1. During the first 12 training trials, the animats learnt the topology of the maze
and planned their navigation trajectory in the absence of both block A and B. Similar to
Tolman & Honzik’s findings, our results in all size of maze (normal, large and large*)
show that the model learnt to select the shortest goal-directed pathway P1 significantly
more frequently than the alternative trajectories P2, P3 (ANOVA, p < 0.0001 for all
mazes). However, for the large protocols (but not for large*), the size of this maze began
to induce few mistakes, as shown by its lower median value of Path 1 selection.

Days 2-14. During this training phase (consisting of 156 trials), a block was in-
troduced at location A, which forced the animats to update their topological maps dy-
namically, and to plan a detour to the goal. P1 was ignored in this analysis (similarly
to Tolman & Honzik’s analysis) because blocked. The results reported by Tolman &
Honzik provided strong evidence for a preference for the shortest detour path P2. Con-
sistently, in our simulations (Fig. 2B) we observed a significantly larger number of
transits through P2 compared to P3 for normal and large* cases (ANOVA, p < 0.0001),
but this was hardly significant for the large protocol with a mean number of selected P3
very closed to P2 (ANOVA, p < 0.0082). This low performance was very closed to the
behavior of an animat turning randomly toward Path 2 or Path 3.

Day 15. Seven probe trials were performed during the 15th day of the simulated
protocol, by removing the block A and adding a new block at location B. This manip-
ulation aimed at testing the “insight” working hypothesis: after a first run through the



shortest path P1 and after having encountered the unexpected block B, will animats try
P2 (wrong behaviour) or will they go directly through P3 (correct behaviour)? Accord-
ing to Tolman & Honzik’s results, rats behaved as predicted by the insight hypothesis,
i.e. they tended to select the longer but effective P3. Our probe test simulation results
are shown in Fig. 2C. Similar to rats, the animats exhibited a significant preference for
P3 compared to P2 (ANOVA, p < 0.0001) for normal and large* cases. However this
probe test was a failure for large, where the number of P3 choices was not significantly
different from the number of P2 choices (ANOVA, p < 0.6756).

Taken together, these results clearly show an impaired performance proportional to
the size of the maze, which can be overcome thanks to an adaptive multiscale repre-
sentation fitting the structure of the maze and providing a top-down modulation of the
activation-diffusion mechanism.

3.2 Analysis of Neural Activities

For all the simulations, we used pools of 600 units for each type of neurones (S, P, D,
V, Q and HP). A series of analyses, partially based on the same theoretical tools as in
[1], was done to characterise the neural activities subserving the behavioural responses
of the system. The set of stimuli S consisted of the places visited by the animat. For
the analyses, the continuous two-dimensional input space was discretized, with each
location s ∈ S defined as a 5 x 5 cm square region of the environment.

First, spatial neural activities from three populations were recorded during the large
Tolman & Honzik’s task: HP cells and S units from L1 population as well as from L2

population. In our previous work, we have shown that the cortical column model (i.e.,
the L1 population) was able to build a more compact spatial representation storing the
main part of the spatial information [1]. Here we focus on the spatial properties of theL2

population compared to L1 and HP neurones. Fig. 3 conveys a clear information on the
population distinction between S units of L1 and L2: (i) fewer units of L2 are necessary
to represent the same environment (Fig. 3A, ANOVA, p < 0.0001), (ii) according to
their spatial density measure [1, 20], their receptive fields are less redundant (Fig. 3B,
ANOVA, p < 0.0001), and (iii) the distribution of L2 population responses is sparser
than for L1 (Fig. 3C, ANOVA, p < 0.0001) as shown by its kurtosis value [1, 20], i.e.
fewer neurones of population L2 were, on average, responding to a given stimulus s
simultaneously. These results suggest that the L2 cortical column network was able to
provide an even sparser state-space population coding than L1 population. Note that the
density is strictly greater than 0 for L2, thus every place of the maze are represented by
the neural network.

In a second series of analyses, we focused on the activity of single cells, and we
recorded the receptive fields of the three types of units. Figs. 3E displays some sam-
ples of place fields for the three populations. What is mostly remarkable here is the
firing properties of L2 state neurones: after learning, the activity of these units capture
some structural properties of the environment (i.e., corridors organization). A quantita-
tive analysis of this property was performed: the mean size of place fields (computed
as the number of contiguous pixels with the firing rate above the grand mean rate plus
the standard deviation [21]) was indeed significantly bigger than for L2 units (Fig. 3F,
ANOVA, p < 0.0001). Coherently their responses were the least sparse ones across
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Fig. 3. Spatial correlates (A-D) Population spatial properties for HP cells, L1 cortical S units and
L1 cortical S units: number of recruited units during the task, spatial density of the receptive
fields, population kurtosis and population spatial mutual information. (E) Samples of receptive
fields of three units from each population studied here. (F-I) Single cell spatial properties for
HP cells, L1 cortical S units and L1 cortical S units: size of receptive fields, lifetime kurtosis,
single unit spatial mutual information and information sparseness computed as the ratio between
population information and the sum of single cell information.

the time (Fig. 3G, ANOVA, p < 0.0001) according to their low lifetime kurtosis [1,
20]. Here the results tend to differ from our previous study [1]: the mean size of place
cell receptive fields was indeed significantly lower than for L1 cortical units (ANOVA,
p < 0.0001), and coherently their responses were the sparsest ones across the time
(ANOVA, p < 0.0001). The difference with our previous results can be simply ex-
plain by the change of synaptic input function for the cortical neurones, which tends to
broader the range of responses for L1 S units. In fact, these new results receive support
from experimental data by [21]: these authors measured field size for place cells and
prefrontal neurones in rats solving a navigational task, showing that the former were
significantly smaller than the latter.

We also used an information theoretic analysis [22]: the mutual information MI(S;R)
between neural responses R and spatial locations S allowed us to quantify the spatial
information content of a neural code, i.e. how much could be learnt about the animat’s



position s by observing the neural responses r. It was evaluated for single units as well
as for a whole population of neurones (in that case, r was a vector of firing rates), and
the ratio between these two values was used to assess the level of sparseness of spatial
information. The results of our information theoretic analysis are consistent with these
properties. Indeed, L2 state units responding to a broader range of spatial stimuli, their
single neurone mutual information is much higher (Fig. 3H, ANOVA, p < 0.0001). The
spatial mutual information computed for the whole population of place cells, L1 and
L2 state units (Fig. 3D) demonstrate a larger information content for the HP population
(ANOVA, p < 0.0001), which may look in contradiction with the single cell mutual
information. However they quantify quite different properties. As mentioned, the latter
is related to the range of stimuli that make a cell fire, as well as the variability of this
discharge. The population spatial information indicates that, for the binning procedure
applied in this analysis, the place cell population is far more precise to encode a position
(because its high redundancy). In comparison, state neurones in L2 population encode
a very coarse spatial information. This is coherent with our initial goal of building a
more compact representation accounting only for the main properties of the environ-
ment (here the corridors). Finally, when computing the information sparseness (i.e. the
ratio between population information and the sum of single cell information), it ap-
pears that the information content was more redundant for place cells (Fig. 3I, ANOVA
p < 0.0001), meaning that many of them encoded the same information. Although
loosing a part of the population spatial information, the cortical population achieved a
better coding scheme, maximizing the coding role of each units, particularly for the L2

population.

Our second objective here is to show how information relevant for planning are en-
coded in the neural network. It is first necessary to demonstrate that the V population
of the cortical model encodes a pseudo-distance to the goal. As such, we need to show
that responses of V units belonging to columns selective for places situated at different
distances of the goal are not ambiguous, are anti-correlated with the distance. The first
point is demonstrated in Fig. 4, in comparison with S units. Finding the selectivity of
the latter is easy in the spatial domain (see previous paragraph), however that is not the
case for V units. Instead, it is necessary to observe their firing frequency preferences
to see that their responses are not overlapping (Fig. 4A), unlike S units (Fig. 4B). This
is confirmed by a redundancy and a population kurtosis analysis showing the much
sparser responses of V units in the frequency domain compared to the spatial domain
(ANOVA, p < 0.0001), with an opposite effect for S units (ANOVA, p < 0.0001). The
second property of distance anti-correlation is shown on the Fig. 4D, with or without
the effect of the high-scale cortical population. This last study observed the effect of the
top-down modulation exert by populationL2 V units over the propagating activity at the
level of L1. Indeed, we remind that one motivation for this extension of the model was
the possibility to deal with large environments. We have shown behaviourally that the
model was able to adapt to them. Fig. 4D is a direct evidence of the neural effect of this
top-down modulation. Without any modulation, the strength of V units discharge fall
exponentially with the distance of the column from the goal position. At a given point,
this fast decreasing propagating activity will reach the neural noise level. From that
point, only random decisions will be made because there will not be any correlation left
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Fig. 4. (A) Activities of 12 V units (left: spatial activity, right: histogram of firing rates. (B)
Activities of 12 S units. (C) Activities of 3 pairs of (Q,D) units belonging to the same minicolumn
for two phase of the protocol where a block is introduced in the maze. (D) Effect of the top-down
modulation exert by population L2 V units over the propagating activity at the level of L1 V unit
population.

between the firing activity and the real distance to the goal (e.g., the low performance
on Day 15 for the large protocol). When a top-down modulation is present, the decreas-
ing effect becomes piecewise linear, each subpart corresponding to a high scale zone
encoded by a L2 column.

Reward-related V units ans location-selective S units convey their information into
the D neurones which integrate them into activities reflecting the selection of action
(Fig. 4C). We remind that each minicolumn of the model is supposed to encode a spe-
cific state-action pair (s, a). As such, Q units encode the distance to the goal if a is
selected at s, and D units integrate spatial information indicating the current position
with this reward information. It can be seen on Fig. 4C at t = 6s of the Day 2 Trial
1 that the animat has updated its connectivity in the cortical network to represent the
presence of the block A. Thus, the previous best choice Path 1, represented by the best
pair (Q1, D1) at t ≈ 4s is not correct anymore at t ≈ 7s: Path 2 is now the best al-
ternative as shown by the best pair (Q2, D2). The same mechanism occurs on Day 15
Trial 1, with Path 3 represented by (Q3, D3) becoming the best choice. Taken together,



all these analyses demonstrate that the network encodes enough behavioural informa-
tion, including distance-to-goal and best alternative information, to solve a planning
navigation task

3.3 Conclusion

We presented a multiscale extension of our previous cortical column model for spatial
navigation. It enables the encoding of cognitive map whose resolution fits the structure
of the environment (e.g., corridors). As a consequence, the model is provided with a
better adaptability in large mazes (e.g., in the presence of a maze four times larger
than the original Tolman & Honzik’s one), thanks to a top-down modulation regulating
the activation-diffusion process. The model also unravel the possible links between the
single unit level and the behavioural level relevant to the learning of the task (e.g., to the
selection of the shortest path to the reward). Our neural response analysis suggests how
the interplay between the model hippocampus and the prefrontal cortex can yield to the
encoding of manifold information pertinent to the spatial planning function, including
for example distance-to-goal correlates.

The model is currently being validated by comparing simulated neural response
patterns against those obtained by in vivo electrophysiological recordings from the hip-
pocampus and the prefrontal cortex of freely moving rats [23]. This comparative study
aims at providing new insights on the interaction between the hippocampus and the
prefrontal cortex. In addition, an ongoing work in coordination with experimentalists
[23] attempts to study the learning processes related to spatial memory, such as declar-
ative memory consolidation occurring during sleep. This will possibly lead to testable
predictions about the formation of memory traces relevant to spatial behaviour.
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