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Abstract

Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions,
where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar
contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay
between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete
existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms,
single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a
purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects
of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by
contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between
normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On
the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar
deficits may impact the exploration-exploitation balance during spatial navigation.
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Introduction

The cerebellum is known to mediate sensorimotor adaptation

[1–3], fine movement and coordination control [2,4,5], and

instrumental conditioning [6–8]. However, its role in higher-level

functions remains partially understood and controversial [9,10].

Recent anatomical studies demonstrate that cerebellar outputs

target non-motor cortical areas, providing the substrate to

influence cognitive tasks [11]. Moreover, the class of functions

associated to cerebellar activation has become very diverse and

includes language, attention, and emotion related processes

[10,12,13]. Here, we investigate the role of the cerebellum in

spatial cognition, which involves parallel information processing,

relational memory, and context-dependent action selection [14–

17]. We set forth a neurocomputational framework to provide a

comprehensive interpretation of behavioural findings supporting

the cerebellar implication in spatial navigation [18–21]. The

presented approach cross-links different organisation levels (e.g.

from synaptic plasticity to spatial behaviour) to investigate the

functional interplay between the cerebellum and the hippocampal

formation during goal-oriented navigation tasks.

Spatial cognition requires both declarative and procedural

learning in order to elaborate multimodal representations

supporting navigation [22]. Declarative learning allows spatio-

temporal relations between multiple cues or events to be encoded

[23,24], and it is instrumental to the formation of cognitive maps

for navigation [25]. A large body of experimental work has

provided evidence for a role of the hippocampal formation in

declarative spatial learning [15,17,23,26–32]. The involvement of

procedural learning in spatial cognition is more complicated and

several aspects must be taken into account. First, procedural

learning mediates associations between environmental stimuli and

responses, e.g. turning left at the centre of a cross maze, or

following a visible cue that changes position from trial to trial in

the water maze [22,33–35]. This type of procedural learning is

tightly linked to reward-related signalling in the brain and is

primarily subserved by the basal ganglia [22,35,36]. Second, at a

lower level, procedural learning mediates the acquisition of an

ensemble of sensorimotor procedures necessary to perform

navigation and to optimise goal-directed trajectories (locally in

space and time) through sensorimotor adaptation [18,31]. A

further aspect relates to the role of the low-level sensorimotor

procedures in global behaviour. Indeed, disturbances in sensori-

motor adaptation can have profound influence on high-level

aspects of behaviour such as environment exploration [18,31,37],

ability to perform path integration [38–40] and, ultimately, the

ability to form a representation of space – the core of declarative

spatial memory [41]. The focus of the present study is the link

between the low-level, or local, procedural learning (i.e. its latter

two aspects) and its high-level, or global, implications in spatial

behaviour and declarative memory.

A growing number of studies suggest an important role of the

cerebellum in procedural spatial learning [18,19,21,42–46]. For

instance, Petrosini et al. [18] demonstrated that hemicerebellecto-

mised rats are impaired in learning effective exploratory behaviour

when solving open-field navigation tasks – although their
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Figure 1. Model architecture and simulated navigation protocols. A. Overview of the connectionist model implementing a functional
coupling between cerebellar and hippocampal networks. Note that arrows indicate functional projections, which do not necessarily correspond to
direct anatomical pathways. B. The simulated Morris watermaze [26] consists of a circular maze of 150 cm in diameter. C. The simulated Starmaze
[54] is also a circular maze (204 cm in diameter) but it contains alleys (25 cm in width) forming a central pentagonal ring with radiating arms from
each vertex. Both tasks require simulated animals to reach an escape platform (10 cm in diameter) hidden below the surface of opaque water at a
fixed location (black dashed cylinder). At each trial, animals start from one location that is randomly drawn from four possible starting locations (black
stars). In both tasks animals can use available visual landmarks (coloured stars) as well as self-motion cues to learn allocentric spatial representations.
doi:10.1371/journal.pone.0032560.g001
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swimming performance is not affected compared to their control

littermates. Leggio et al. [44] showed that local procedural

mnemonic processes subserving fine tuning of navigation trajec-

tories may involve the interaction between the cerebellum and

sub-cortical areas. More recently, Burguière et al. [21] reported

that L7-PKCI transgenic mice – which lack parallel fibre-Purkinje

cell long-term synaptic depression, LTD [47] – are impaired in the

acquisition of optimal goal-directed trajectories, which corrobo-

rates the hypothesis that cerebellar LTD may mediate a local

sensorimotor adaptation process shared by motor and spatial

learning functions [21,44]. It is worth mentioning that a

declarative role of the cerebellum in spatial cognition has also

been postulated [41]. By using lurcher mutant mice – which

exhibit a massive loss of neurons in the cerebellar cortex and the

inferior olivary nucleus – Hilber et al. [41] suggested that

cerebellar learning may play a crucial role in the retention of

spatial information. However, these results could be ascribed to

the strong interaction between procedural and declarative learning

[37,42,45,46]. To stress the fact that declarative spatial learning

requires appropriate procedural capabilities, Mandolesi et al. [37]

showed that hemicerebellar rats are unable to represent a new

environment because they can not explore it effectively, although

they can detect environmental changes as efficiently as control

animals.

A large number of theoretical studies have investigated the

cerebellar contribution to adaptive motor control and procedural

learning [48–52]. By contrast, to the best of our knowledge, no

neurocomputational study has addressed the role of the cerebel-

lum in spatial cognition, and a comprehensive interpretation of all

aforementioned experimental findings on the cerebellar role in

spatial learning is still lacking. Among others, the following issues

remain open: can a purely local motor adaptation deficit (i.e. only

affecting the low-level component of procedural learning) explain

all observed impairments in cerebellar subjects? Is the cerebellum

also involved in high-level aspects of procedural spatial learning?

Does (and if yes to what extent) cerebellar learning contribute to

the declarative component of spatial cognition? In this paper we

address these questions by interpreting available experimental data

within a quantitative theoretical framework. We attempt to shed

light on the cerebellar role (either direct or indirect) in the multiple

processing stages mediating spatial learning and goal-directed

navigation. The rationale is to complete the existing behavioural

observations with quantitative accounts testing specific hypotheses

on the link between synaptic plasticity mechanisms, cell discharge

properties, interstructure coupling, and behavioural responses.

To study these questions, we construct a large-scale neural

network (Fig. 1A) accounting for the functional coupling between

the cerebellum and the hippocampal formation. The modelled

architecture also includes a putative cortical module for trajectory

planning and inverse dynamics computation. The presented work

focuses on the behavioural genetic findings reported by Burguière

et al. [21], which suggest that LTD at the parallel fibre-Purkinje

cell (PF–PC) synapses is relevant to the adaptive tuning of

navigation trajectories. We model the main information processing

stages of the cerebellar microcomplex and we emulate the lack of

LTD at PF–PC synapses of L7-PKCI transgenic mice [47]. We

simulate the experimental protocols employed by Burguière et al.

[21] to compare the learning performances of L7-PKCI mutants

with those of control animals in two spatial navigation tasks: the

Morris water maze [53] (see simulated setup in Fig. 1B) and the

Starmaze task [54] (Fig. 1C). In both setups, mice have to swim

from random departure locations to a platform hidden below the

surface of opaque water. Both tasks require declarative learning to

build a spatial representation of the environment. Yet, in contrast

to the Morris water maze task, the Starmaze alleys guide

movements, which eventually reduces the low-level procedural

demand of the task. Thus, the use of these two paradigms allows

the relative importance of the declarative and procedural

components of navigation to be assessed [21].

Our simulation results suggest that by contributing to the

integration of idiothetic (self-motion) cues – i.e. path integration or

dead reckoning [16,55–58], cerebellar learning can influence

hippocampal spatial representations. We predict changes on the

level of single hippocampal cell properties in control vs. mutant

animals. These cerebellum-dependent changes in spatial coding

may in turn lead to behavioural differences between control and

L7-PKCI mice, expressed in differences in circling behaviour and

exploration-exploitation balance during goal-oriented tasks and

free exploratory behaviour.

Materials and Methods

2.1 Integrated model of procedural and declarative
spatial learning

Figure 1A shows an overview of the connectionist architecture

developed for this study. The core of the model is the functional

coupling between the cerebellar and hippocampal networks, which

allows the interplay between procedural and declarative compo-

nents of spatial learning to be investigated. In the following, we

first outline the cerebellar microcomplex and hippocampal

network models, focusing on the connectivity layout and input-

output functional relations. More comprehensive accounts –

including neuronal model equations and parameter settings –

can be found in the Supplementary Methods S1. Second, we

describe the high-level controller and the spatial behaviour policy.

Third, we present the simulated experimental setups and

protocols. Finally, we describe the statistical analyses assessing

both spatial behaviour and neural coding properties.

2.1.1 Cerebellar microcomplex model. In agreement with

Marr-Albus-Ito theory [59–61], we assume that the cerebellum

can acquire internal models of complex sensorimotor interactions

[62,63] and store them in multiple and coupled microcomplexes –

the computational units of the cerebellum [64].

Our cerebellar model is composed of six microcomplexes, such

that each one constructs an internal model of a particular

sensorimotor interaction by adapting its input-output dynamics

through online learning [63,65–71]. In particular, two of the six

microcomplexes (referred to as forward predictors in what follows)

construct forward models that predict changes in egocentric

orientation and position, respectively, of the simulated mouse,

given motor commands that the mouse is about to implement. The

other four microcomplexes (inverse correctors) learn to map desired

future positions into corrective velocity commands compensating

for noisy dynamics – and, consequently, for otherwise inaccurate

movement execution (e.g. local drifts in swimming trajectories).

Both types of internal models mediate low-level procedural spatial

learning by encoding the causal relationships determining

sensorimotor couplings during navigation.

Each of the six simulated cerebellar microcomplexes has the

same neural architecture, which is inspired by the anatomical

properties of the biological cerebellar network (Fig. 2A). We model

the basic elements of the cerebellar microcircuit by means of a

network of populations of spiking neurons (Fig. 2B). Input signals

enter the network via the mossy fibres (MFs), which are connected

by excitatory synapses to the granule cells (GCs) and to the deep

cerebellar nuclei (DCN). Purkinje cells (PCs) receive excitatory

inputs from both GCs (via the parallel fibres, PFs) and inferior

olive (IO) neurons (via the climbing fibres, CFs). The PCs inhibit
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Figure 2. Cerebellar microcomplex model. A. A simplified scheme of the cerebellar microcomplex (adapted from [114]). Information enters the
cerebellum via two neural pathways: the mossy fibres convey multimodal sensorimotor signals, whereas climbing fibres are assumed to convey error-
related information. Granule cells process and transmit sensorimotor inputs to Purkinje cells. Error-related signals also converge onto Purkinje cell
synapses, which undergo long-term modifications (i.e. long-term potentiation, LTP, and depression, LTD). B. Model cerebellar microcomplex circuit.
Each box indicates a population of spiking neurons. The same cerebellar circuit implements both forward (dark gray inputs) and inverse (white
inputs) internal models.
doi:10.1371/journal.pone.0032560.g002
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the DCN units, which are the output neurons of the microcircuit.

A comprehensive account of the employed coding scheme is

detailed in the Supplementary Methods S1, and it is illustrated in

Figs. S1 and S2, for the inverse and forward model, respectively.

The basic learning principle in this network is the following.

MFs excite DCN neurons via all-to-all constant connections.

Without inhibition from PCs, the output of such a defective

microcircuit is constant and does not depend on the input. In

order for the output to be meaningful, the strength of inhibitory

output of the PCs should depend on the input conveyed by MFs

via GCs and PFs. The GC layer provides a sparse representation

of the MF inputs – the number of GC neurons is 100 times larger

than that of MFs and the MF–GC connection probability is only

0.04 (i.e. each MF innervates 400 GCs and each GC receives 4

MF afferents, on average, in agreement with anatomical data [72–

74]). A sparse representation serves to optimise encoding capacity

and information transmission from MFs to PCs [75]. The synapses

between PFs (i.e. GCs’ axons) and PCs are the only plastic

synapses in the model microcircuit, and they learn to translate the

(sparsely represented) input into PC output (that inhibits DCN).

Bidirectional long-term plasticity (i.e. potentiation, LTP, and

depression, LTD) modifies the efficacy of PF–PC synapses and

shapes the input-output dynamics of the microcomplex. We

implement LTP as a non-associative mechanism [76], such that

every incoming PF spike triggers a synaptic efficacy increase. The

modelled LTD is a supervised associative mechanism with the

teaching signal conveyed by the CFs (output fibres of the IO

neurons). This is in accordance with experimental data showing

that conjunctive inputs to a PC from PFs and CFs tend to depress

the PF–PC projections [61,77,78]. To model L7-PKCI transgenic

mice, in which PF–PC LTD is not functional [47], we switch off

the associative LTD in the modelled PF–PC synapses.

2.1.2 Hippocampal model. The spatial representation

module consists of a hippocampal network adapted from our

previous works [79–81]. The model integrates multimodal spatial

information to establish and maintain hippocampal place field

representations. The discharge properties of model hippocampal

neurons are consistent with those of their biological counterpart

[81]. Unsupervised Hebbian learning shapes the dynamics of the

hippocampal network producing spatially-tuned neural activity

[23]. After training, hippocampal population coding supports

place recognition and long-term spatial memory [79,81].

Figure 3 depicts a simplified view of the hippocampal model

[79–81]. The model integrates idiothetic (self-motion) and

allothetic (visual landmark related) information to establish and

maintain hippocampal place fields. The idiothetic input to model

CA1 place cells is provided by feed-forward connections from a

population of grid cells in a simulated Layer II of the dorsomedial

entorhinal cortex [82,83]. Model grid cells discharge as a function

of integrated self-motion cues over time (i.e. path integration),

where self-motion cues represent the velocity vector corresponding

to the last movement. The allothetic input is conveyed by

panoramic visual snapshots of the environment, processed by a

large set of orientation-sensitive filters [80]. This visual informa-

tion is encoded in a population of vision-based place cells (VC)

[81]. As exploration of a novel environment proceeds, unsuper-

vised Hebbian learning allows the hippocampal place field

representation to be built incrementally. Since path integration

is vulnerable to cumulative error [57], maintaining allothetic and

idiothetic representations consistent over time requires to bound

dead-reckoning errors by occasionally resetting the path integrator

[16,79]. We assume that the uncertainty of the location estimate

provided by the path integrator grows linearly with time. In order

to decrease the uncertainty, the simulated mouse uses the learnt

allothetic spatial representation – encoded by the VC population

activity – to localise itself and calibrate the path integrator,

whenever it finds a previously visited location (see [79–81], for a

full account of the hippocampal model, its implementation details

and a validation of the model in a different set of tasks).

2.1.3 Modelling the cerebellar-hippocampal interaction. In

this paper, we test the hypothesis that cerebellar procedural learning

may influence path integration – and consequently the encoding of

idiothetic cues in spatial memories. To do so, we employ the output of

the cerebellar forward models (which predicts movement-related

sensory feedback) to feed the idiothetic component of our hippocampal

place code. In other words, we connect the output of the forward

predictors to the path integrator (Fig. 3). Hence, the simulated forward

models provide the hippocampal formation – and in particular the

medial entorhinal cortex – with self-motion related predictions suitable

to refine the estimate of linear and angular displacements over time.

We assume that the angular and linear displacements predicted by the

Hippocampus
CA1 - CA3 Place cells

Path integration
EC

Grid cells

Visual inputSelf-motion input

View cells

Proprioception Forward model
prediction

Figure 3. Hippocampal model. Visual input is processed by a set of filters (not shown) that project to hypothetical view cells. Grid cells in the
entorhinal cortex (EC) receive self-motion input and visual input, preprocessed by the population of view cells. The grid cells connect to place cells in
the hippocampal areas CA1–CA3. Adapted from [81].
doi:10.1371/journal.pone.0032560.g003
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forward models for each motor command are combined with sensory

self-motion feedbacks (e.g. proprioceptive) to drive the entorhinal grid

cell population of the model. Under this scenario, an impaired

cerebellar processing would affect path integration and, consequently,

the elaboration of hippocampal spatial representations. As a

consequence, simulated control and L7-PKCI mice do not share

equivalent spatial representation abilities mediated by the hippocampal

formation.

2.1.4 Spatial behaviour. The model also includes a high-

level module mediating cortical-like action selection and primary

motor control (Fig. 1A, see [84] for the role of the prefrontal cortex

in action selection and motor control). This module receives as

inputs both an estimate of the current state from the hippocampal

network and a prediction of the next state from the cerebellar

forward models. It plans goal-directed trajectories and it locally

maps desired positions onto motor commands through inverse

dynamics computation. This module is purely algorithmic, since

modelling goal-oriented navigation planning was out of the scope

of this paper (see [85] for a recent model of action planning in a

prefrontal cortical network model).

Simulated mice select actions (i.e. egocentric motion directions

in the range ½{p=4,p=4�) based on a probabilistic policy. At each

simulation step Dt~200 ms, a probability Pswitch makes the animal

select one of the following behavioural responses:

N It can adopt a circling behaviour with probability Pcirc (in the

Starmaze environment, where no circling can occur, Pcirc is

always zero). As observed by Fonio et al. [86], this peripheral

round-trip behaviour is predominant in mice which have not

fully explored the near-wall portions of an environment. To

account for this observation, we implement Pcirc as a function

of the amount and the quality of the spatial knowledge of a 10-

cm peripheral annulus of the maze:

Pcirc~1{½Rcirc{k:ecirc�z ð1Þ

where Rcirc denotes the fraction of the 10-cm peripheral annulus

properly encoded by the place cell population activity, and ecirc

is the mean place code accuracy over the peripheral annulus (see

Supplementary Methods S2, Eqs. S7–S8, for the definition of

measures R and e); k is a normalisation factor and ½f (x)�z is the

positive part operator – i.e. ½f (x)�z~ max (f (x),0). According

to Eq. 1, if the near-wall area is well explored (Rcirc&1) and the

spatial localisation error is low (ecirc&0), then no circling occurs.

N With probability 1{Pcirc it chooses to either explore the

environment or exploit the acquired knowledge. More

specifically:

– It can select an exploratory (random) motion direction with

constant probability Pexplore.

– It can exploit the acquired spatial knowledge to perform goal-

directed navigation with a probability Pexploit~1{Pexplore.

During exploitation, a trajectory planner estimates the direc-

tion to the hidden platform (goal) at each time step, based on

the hippocampal place code.

N Otherwise, with probability 1{Pswitch, the simulated animal

moves in the same direction as in the previous time step. The

default values of these parameters are: Pswitch~0:02;

Pexplore~0:1. These values allow the stochastic action selection

policy to approximate the exploratory behaviour of control

mice – in both the MWM and the Starmaze tasks described

below.

The overall spatial behaviour model is based on the data from

Fonio et al. [86], showing that mice’s exploratory patterns consist

of reiterated home-centred round-trips of increasing amplitude

and ‘‘degrees of freedom’’. First, mice explore a restricted area

around their home base (dimension 0); second, they start moving

along the wall of the environment (dimension 1; peripheral round-

trip or circling); third, they begin making incursions to the centre

of the environment (dimension 2) to fully explore it. Importantly,

the exhaustion of a given spatial dimension is a necessary

condition for the emergence of the next dimension in the sequence

[86].

2.2 Spatial navigation tasks and protocols
2.2.1 Morris Water Maze and Starmaze tasks. We test

the model against experimental findings in two spatial learning

paradigms: the Morris Water Maze (MWM) [53] and the

Starmaze task [54] (Figs. 1B, C). We reproduce the

experimental protocols used by Burguière et al. [21] to assess to

what extent simulated L7-PKCI transgenic mice are impaired,

compared to controls, in solving the MWM and the Starmaze.

Two groups of simulated mice (n = 15 controls and n = 15

mutants) undertake 4 training trials per day, over 10 days for

the MWM and 13 days for the Starmaze. At the beginning of each

trial the simulated animal is placed at a departure point randomly

drawn from a set of four possible locations (Figs. 1B, C). Each trial

ends either when the animal has reached the hidden platform or

after a 90 s timeout – i.e. if the animal fails to locate and swim to

the platform. Distinct simulated mice in the same group differ in

two ways. First, each animal is endowed with a new instance of the

cerebellar network, which is initialised according to probabilistic

parameters – as described in Supplemenary Methods S1. Second,

the spatial policy governing high-level action selection is

probabilistic – as described in Sec. 2.1.4. For instance, since

explorative vs. exploitative responses depend on stochastic

variables, it is unlikely that two distinct animals have equivalent

navigation trajectories. These differences in spatial behaviour

impact, in turn, the information content of the hippocampal place

code, which is built incrementally and depends on the exploration-

exploitation balance of a given simulated animal.

We simulate the MWM and the Starmaze experimental

protocols in the Webots platform [87]. The latter provides a

realistic environment where simulated animals can process visual,

proximity (whisker-like), and self-motion (proprioceptive-like)

signals. Simulated mice move at a speed within the range of

½0,15� cm/s. Sensory feedback (e.g. visual, tactile and propriocep-

tive information) occurs every 200 ms in order to process internal

state variables and select actions. Prior to the action execution, an

inverse dynamics module (Fig. 1A) translates actions into low-level

motor commands. Stochastic noise affects the execution of each

action, emulating unpredictable sensorimotor perturbations and/

or drifts from desired swim trajectories.

2.3 Statistical analyses
2.3.1 Behavioural analysis. We compare the goal-oriented

behaviour of L7-PKCI and control mice by assessing the same set

of parameters measured by Burguière et al. [21]: (i) the mean

escape latency (s), i.e. the average time spent to reach the platform;

(ii) the mean heading (deg), computed as the average angular

deviation between the ideal and actual trajectory to the goal; (iii)

the mean circling time (s), i.e. the average time spent in a 10-cm

peripheral annulus of the maze [44]; (iv) the ratio between the time

spent in the target quadrant and the trial duration; (v) the mean

distance-to-goal (cm), i.e. the average Euclidean distance between

the animal and the platform; (vi) the mean distance swum by the

Cerebellar Learning Shapes Spatial Memory
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animal (cm); (vii) the search score, characterising the shape of a

goal-oriented trajectory [43]; (viii) the mean number of visited

alleys (for the Starmaze only); (ix) the mean speed of the animal

(cm/s). We average each parameter over all trials performed in

one day by all subjects of a same group. An ANOVA analysis

quantifies the statistical significance of the results (with Pv0:01
considered as significant).

2.3.2 Analysis of unitary and population neural

activities. We characterise the activity patterns of unitary and

multiunit discharges in terms of spatial encoding properties and

time course of the spatial learning process. We quantify: (i) the

spatial selectivity properties of single cells by measuring the

coherence [88], mean size, and number of peaks of the receptive

fields; (ii) the density – and other correlated measures such as

sparseness and redundancy – of the population place code; (iii) the

reliability of neural representations (at the level of both single cell

and population codes) in terms of spatial information content – i.e.

how much can be inferred about the animal’s position by

observing the neural responses only; (iv) the time course of the

accuracy of the population vector estimate for the animal’s

position [89,90]; (v) the time course of the mean percentage of

locations appropriately encoded by the spatial representation – i.e.

the explored locations where the accuracy of the population

vector estimate is above a fixed threshold. An ANOVA analysis

measures the statistical significance of the results (Pv0:01 is

considered as significant). See Supplementary Methods S2, for

details on the statistical measures and parameters employed for

data analysis.

We assess the overall accuracy of the spatial representation by

means of two complementary measures, namely R and e, which

quantify the amount of information encoded in the hippocampus

and the quality of this information, respectively. The measure R
estimates the percentage of the environment covered by the place

field population and is calculated as the fraction of positions where

the animal can self-localise (and then recalibrate its path

integrator) with good accuracy (the accuracy threshold is set to

10 cm). The measure e quantifies the accuracy of the place code as

the mean self-localisation error – i.e. the discrepancy between the

actual position of the animal and the position estimated by

population vector decoding of hippocampal activity [89,90].

See Supplementary Methods S2 , for the definition of measures

e and R.

Results

During training in the MWM, adaptation in cerebellar forward

models resulted in correct predictions of sensory outcomes of given

motor commands (see Supplementary Results S1 , Figs. S3 A–E),

whereas learning in simulated inverse correctors improved the

accuracy of motor command execution significantly (Supplemen-

tary Results S1, Figs. S3 F–J). Sensorimotor adaptation in both

models relied on the associative LTD in the PF–PC synapses of the

cerebellar network (see Fig. 2). Consequently, the performance of

simulated L7-PKCI mutants, in which this LTD is absent, was

inferior to that of simulated controls, and this deficit was evident

from the first day of training (Figs. S3 C, H).

In the context of the full spatial learning model (Fig. 1), we

expected L7-PKCIs’ cerebellar adaptation deficit to have two pri-

mary consequences. First, it could influence low-level (or local) motor

behaviour. Indeed, an impairment in the inverse corrector com-

ponent would cause deviations in the performed motor commands

relative to the desired ones, leading to inaccurate implementation of

goal-directed trajectories in mutants, relative to controls. Second, it

could disrupt the normal functioning of the cerebellar-hippocampal

interaction, potentially influencing higher-level (or global) spatial

learning and behavioural responses – i.e. beyond purely cerebellar

sensorimotor adaptation functions. To dissociate the roles of

cerebellar adaptation deficits in local vs. global spatial behaviour,

we tested the full cerebellar-hippocampal model in the experimental

paradigm proposed by Burguière et al. [21], which allows the relative

contributions of procedural and declarative components of spatial

navigation to be assessed.

3.1 Cerebellar role in declarative spatial learning
3.1.1 Cerebellar adaptation deficits impair goal-directed

navigation. We tested simulated controls (i.e. with intact

cerebellar learning) and L7-PKCIs (i.e. with disabled cerebellar

LTD) in the MWM task. Both the mean escape latency and the

search score of simulated mutants were significantly impaired over

training compared to controls (Fig. 4A; escape latency: ANOVA,

F1,28~56:16, Pv0:001; search score: ANOVA, F1,28~53:24,

Pv0:001). These two behavioural measures were highly

correlated for both groups of simulated animals (Fig. 4B;

controls: Pearson’s product-moment coefficient r~0:936,

Pv0:001; mutants: r~0:94, Pv0:001). This navigation

impairment was not due to a deficit in swimming speed (not

shown, ANOVA, F1,28~1:47, Pw0:1). Navigation trajectories of

simulated L7-PKCIs were also significantly less efficient than

controls in terms of heading-to-goal – i.e. deviation between actual

and direct trajectory to the platform (Fig. 4C, ANOVA,

F1,28~71:76, Pv0:001). The intergroup differences of searching

behaviour were also corroborated by the ratio between the time

spent within the platform quadrant and the trial duration, showing

a significant impairment of simulated mutants (Fig. 4D, ANOVA,

F1,28~34:22, Pv0:001). Similarly, L7-PKCIs’ spatial behaviour

led to significantly longer mean distance-to-goal over training than

controls (Fig. 4E, ANOVA, F1,28~58:83, Pv0:001). The circling

time of simulated L7-PKCI mice was significantly larger,

compared to controls, over the entire training phase (Fig. 4F,

ANOVA, F1,28~83:12, Pv0:001). Since the action selection

policy (Sec. 2.1.4) was exactly the same in controls and mutants,

the observed intergroup difference in circling time indicates that

mutants needed significantly more time than controls to acquire

an accurate spatial representation of the peripheral areas of the

environment [86].

Figure 5 visualises behavioural differences between simulated

controls and mutants qualitatively, by showing the occupancy plots

for simulated controls and mutants. Both simulated groups

improved their spatial behaviour through training and succeeded

in localising and navigating to the platform from any starting

location of the maze. Yet, consistently to quantitative results of

Figure 4, mutants exhibited a longer circling time and a wider

spread in searching behaviour than controls.

Overall, these simulation results fully account for the navigation

impairments of L7-PKCI mice in the MWM observed experi-

mentally [21]. Also, the mean intergroup differences are

comparable in simulation and experiments for all measured

behavioural parameters (escape latency: ANOVA, F1,18~0:7535,

Pw0:1; heading: ANOVA, F1,18~2:4892, Pw0:1; ratio be-

tween time spent in the platform quadrant and trial duration:

ANOVA, F1,18~0:9144, Pw0:1; distance to the platform: ANOVA,

F1,18~0:7987, Pw0:1; and circling time: ANOVA, F1,18~1:6411,

Pw0:1).

In contrast to the MWM task and in agreement with data from

Burguière et al. [21], the same control and mutant groups did not

exhibit any significant difference in the simulated Starmaze task

(Figs. 4G,H). We did not observe any statistically significant

intergroup difference in terms of mean number of visited alleys

Cerebellar Learning Shapes Spatial Memory
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(Fig. 4G, ANOVA, F1,18~4:3505, Pw0:05), mean distance swum

to reach the platform (Fig. 4H, ANOVA, F1,18~1:3031, Pw0:1),

and mean escape latency (not shown, ANOVA, F1,18~3:7960,

Pw0:05).

The above simulation results suggested that our cerebellar-

hippocampal model could reproduce the navigation behaviour of

control and L7-PKCI mice in both MWM and Starmaze tasks.

However, the question remained of whether the navigation

P > 0.05
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Figure 4. The hypothesis of a cerebellar influence on path integration, and hence on hippocampal place coding, accounts for all L7-
PKCIs’ spatial navigation impairments observed experimentally. Results in the MWM: A. Mean escape latency over training (left y-axis)
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doi:10.1371/journal.pone.0032560.g004
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impairment of mutants in the MWM task was due to a purely local

adaptation deficit, as suggested by Burguière et al. [21], or also to

a more global deficit induced by an ineffective cerebellar-

hippocampal interaction. To answer this question, we blocked

the functional input from the cerebellum to the path integration

network (Fig. 1), in order to isolate the local procedural and the

global declarative components of the spatial learning model. Our

simulation results indicated that a purely local sensorimotor

adaptation deficit could not account for all L7-PKCIs’ navigation

impairments observed experimentally (see Supplementary Re-

sults S2 , Figs. S4 , S5 ). In particular, the goal-searching

behaviour of simulated mutants was not significantly impaired

by the local procedural deficit only (Figs. S4 C, D). Thus, our

results suggested that a functional connection between the

cerebellum and the hippocampal formation is necessary to explain

the spatial behaviour differences between controls and mutants,

corroborating the hypothesis of a cerebellar involvement in

declarative spatial memory.

3.1.2 Cerebellar adaptation deficits reduce the accuracy

of hippocampal place representations. We next studied in

more detail what properties of the spatial memory function were

different in simulated control and mutant mice. We compared the

time course of hippocampal spatial information coding in

simulated controls and mutants solving the MWM (Fig. 6). Both

the rate and the accuracy of hippocampal place coding were

impaired in L7-PKCIs, relative to controls, with significant time

course differences during days 1–5 of training (Fig. 6A, ANOVA,

F1,28~10:24, Pv0:01). Although both simulated groups

improved the accuracy of their spatial code over time (Fig. 6B),

simulated mutants exhibited significantly larger self-localisation

errors than controls through the entire training (ANOVA,

F1,18~27:2, Pv0:001). Consistently, this result was confirmed

by averaging over all training sessions (Fig. 6C; ANOVA,

F1,18~27:2, Pv0:001). Thus, the spatial code was less accurate

in simulated mutants than in controls solving the MWM.

3.1.3 Population place coding is suboptimal in L7-PKCI

mice compared to controls. What were the neural properties

on the population level responsible for this difference in accuracy?

We further assessed the characteristics of hippocampal population

codes in both simulated groups (Figs. 7A–C). The mean spatial

information content of controls’ place field representation was

significantly larger than in mutants (Fig. 7A; ANOVA

F1,18~15:9845, Pv0:001). The redundancy of the spatial

information content of the two neural population codes tended,

on average, to be larger in mutants than in controls (Fig. 7B;

ANOVA F1,18~29:8529, Pv0:001). The intergroup difference of

mean spatial density of receptive fields confirmed this observation

(Fig. 7C; ANOVA F1,18~23:6007, Pv0:001). These results

pointed towards suboptimal place field representations in mutants

– i.e. encoding less spatial information despite a more redundant

(dense) place code, compared to controls. But where did this lack

of optimality at the level of mutants’ population code come from?

3.1.4 Effects of cerebellar adaptation deficits on the

properties of unitary hippocampal place fields. To

Figure 5. The hypothesis of a cerebellar influence on path integration, and hence on hippocampal place coding, accounts for all L7-
PKCIs’ spatial navigation impairments observed experimentally. Occupancy maps in the MWM. Three-dimensional diagrams of the mean
time spent by control and mutant mice at each location of the maze at different training phases (days, 1, 3, 5, 7 and 10). A grid of resolution 31 631
(each grid cell is 565 cm) samples spatial locations. The value associated to each grid cell is the normalised time spent in the cell region with respect
to the duration of each trial, averaged over all day trials and over all animals of a group.
doi:10.1371/journal.pone.0032560.g005
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address the above question we compared the spatial tuning

properties of single hippocampal place cells in both simulated

groups (again when solving the MWM). We observed that the size

of hippocampal receptive fields was comparable, on average, in

controls and mutants (Fig. 7D; ANOVA F1,98~0:15, Pw0:5).

Similarly, the spatial coherence of mutants’ place fields was not

impaired compared to controls (Fig. 7E; ANOVA F1,98~0:47,

Pw0:1). In addition, there was no significant intergroup difference

with respect to the amount of spatial information encoded by

single hippocampal units (Fig. 7F; ANOVA F1,98~0:01, Pw0:5).

Finally, place cells in mutants and controls were also statistically

comparable in terms of mean firing rate (not shown, ANOVA

F1,98~0:56, Pw0:5). Thus, these standard measures of spatial

tuning and accuracy of unitary hippocampal responses failed to

explain the subtle but significant difference observed at the level of

population spatial coding in controls and L7-PKCIs.

We then investigated the properties of model hippocampal single

units by quantifying the unimodal vs. multimodal characteristics of

their spatially tuned discharges. Figure 8A shows some samples of

hippocampal place fields ‘‘recorded’’ from simulated controls (top)

and mutants (bottom) in the MWM. For each cell, we report the

statistical significance of the Hartigan DIP unimodality test [91]

used to classify the spatial firing distributions of single hippocampal

units (DIP test Pv0:01 indicates a multi-peak receptive field).

We quantified the ratio between unimodal and multimodal place

fields for both simulated groups (Fig. 8B, first column). Simulation

results suggested that both groups had a large fraction of single-peak

place cells – controls: 73+2%, mutants: 51+3%. However, they

also indicated that, on average, the proportion of single-peak

hippocampal receptive fields was larger in controls than in L7-

PKCIs (ANOVA F1,198~50:49, Pv0:001). Consistently, mutants

had a significant larger ratio of double- and triple-peak place fields

than controls (Fig. 8B, second and third column, respectively;

ANOVA F1,198~20:52, Pv0:001 and F1,198~15:91, Pv0:001,

respectively). By contrast, both groups had a negligible percentage

of four-peak place fields (Fig. 8B, fourth column). Consistent with

previous results, L7-PKCI had, on average, a significantly larger

number of peaks per hippocampal place field than controls (Fig. 8C;

ANOVA F1,198~7:1884, Pv0:01). Therefore, the model predicts

that this subtle spatial selectivity impairment on the level of unitary

hippocampal cells could be responsible for suboptimal spatial popu-

lation coding in L7-PKCIs, relative to controls, in the MWM. The

latter, in turn, could be responsible for the impaired goal-searching

behaviour of simulated mutants in the MWM (Figs. 4 D, E).
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3.2 Cerebellar influence on exploration-exploitation
control

Our results suggested that the cerebellar (functional) input to the

hippocampal network could contribute to declarative spatial learning

by improving the accuracy of path integration and, indirectly, of

place field representations. The quality of the spatial code could, in

turn, influence the exploration-exploitation balance. Indeed, spatial

goal-directed actions rely on accurate place mapping – because

solving complex navigation tasks (e.g. the hidden-platform version of

the MWM) requires generating goal-directed trajectories based on

the knowledge of both the current position of the animal and the

target location. Therefore, differences between mutants and controls

in the accuracy of the spatial code may result in differences in the

initiation of goal-directed actions, i.e. the switch from exploration to

exploitation. By testing this hypothesis in simulation, we found that

the MWM data by Burguière et al. [21] could indeed reflect an

unbalanced exploration-exploitation trade-off in L7-PKCI mice,

compared to controls (see Supplementary Results S3, Fig. S6). Our

results suggested a significant bias towards explorative behaviour in

mutants, in order to compensate for inaccurate spatial learning. On

the basis of the above results, we propose the following hypothesis on

the role of cerebellar learning in declarative spatial memory. First,

cerebellar adaptation mechanisms are likely to influence spatial

learning by contributing to the accuracy of path integration, and

hence to the quality of hippocampal spatial representations. Second,

on the behavioural level, this contribution induces an increased

exploration time in mutants, and hence delays the switch from

exploration to exploitation in goal-oriented tasks.
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Figure 7. Population place coding is suboptimal in simulated L7-PKCI mice compared to controls. A. Information content of the spatial
code encoded by the population of hippocampal place cells in controls and mutants. B. Redundancy of the hippocampal spatial code in both
simulated groups. C. Spatial density of hippocampal place fields in both groups. Unitary hippocampal place fields in simulated L7-PKCI mice
are not impaired, relative to controls, in terms of size, spatial coherence and information content. D. Mean size of place fields in
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doi:10.1371/journal.pone.0032560.g007

Cerebellar Learning Shapes Spatial Memory

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e32560



In the context of the free exploration paradigm proposed by

Fonio et al. [86], this assumption leads to the following

behavioural prediction: mutant mice would need more time,

compared to controls, to exhaust the exploration of a given

‘‘spatial dimension’’ (e.g. the near-wall area). To illustrate this

prediction in our model, we assessed the free exploratory

behaviour of simulated controls and mutants solving a latent

spatial learning task in a circular track (10 cm width). We let n = 15
controls and n = 15 mutants freely explore the circular maze from

a fixed starting location (home base). We measured the accuracy of

the acquired hippocampal spatial code and compared the time

necessary for simulated controls and mutants to exhaustively

explore the environment (Fig. 9). In the context of the experiment

by Fonio et al. [86], this would correspond to the time required to

exhaust dimension 1 (i.e. circling behaviour), a necessary condition

for the emergence of incursions into the centre of an open-field

environment (i.e. dimension 2). Our simulation results showed that

both groups significantly improved their hippocampal space code

over time through free exploratory behaviour. However, simulated

mutants needed significantly more time than controls to achieve

Figure 8. Multipeak place fields occur with higher probability in simulated L7-PKCI than in control mice. A. Samples of receptive fields
of simulated place cells from control (top) and mutant (bottom) simulated animals. Each plot shows the mean discharge of the recorded neuron as a
function of the animal position in the MWM (red and blue denote peak and baseline firing rates, respectively). The unimodality property of firing
distributions is statistically assessed by a Hartigan DIP test (Pv0:01 indicates a multipeak receptive field). B. Percentage of unimodal and multimodal
place fields in simulated controls and mutants. C. Mean number of peaks per hippocampal place field in both groups of simulated animals.
doi:10.1371/journal.pone.0032560.g008
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the same place map accuracy (Fig. 9; ANOVA, F1,28~10:93,

Pv0:01). On average, simulated mutants exhausted dimension 1

within 15{35% more time than control mice.

Discussion

This study investigates the role of the cerebellum in spatial

navigation. It completes existing experimental findings by quanti-

tatively testing specific hypotheses on the role of the cerebellar-

hippocampal interaction, on the link between synaptic plasticity

mechanisms, unitary and population discharge properties, and

behavioural responses. We focus on behavioural genetic findings by

Burguière et al. [21] and we study the functional relevance of

plasticity at parallel fibres-Purkinje cell (PF–PC) synapses in

navigation tasks. On the one hand, our results corroborate the

hypothesis that cerebellar adaptation significantly contributes to the

fine tuning of goal-directed trajectories [21]. On the other hand, we

draw a novel interpretation of these experimental data. Our results

counter the hypothesis of a purely local procedural deficit being

entirely responsible for all observed spatial learning impairments of

L7-PKCI mice – which lack LTD at PF–PC synapses [47]. Rather,

our results suggest that the less efficient goal-searching behaviour of

mutants (compared to controls) reflects an implication of the

cerebellum in higher-level aspects of spatial learning. In particular,

we propose that by providing predictive state information to

entorhinal grid cells, the cerebellum may play a role in path

integration, and hence contribute to the construction of hippocam-

pal spatial representations.

In view of this proposal, an impaired sensorimotor adaptation at

the cerebellar level would delay the formation of coherent spatial

maps in the hippocampus. Our simulation results show that L7-

PKCI mice are impaired in solving the MWM in terms of both

acquisition rate and encoding accuracy of spatial information.

Furthermore, our results support the hypothesis that suboptimal

spatial representations may lead to suboptimal exploratory

behaviour, primarily expressed as a deficit of L7-PKCI mice in

inhibiting thigmotaxis and in trading-off exploration and exploi-

tation. Similar to Burguière et al. [21], we find that simulated L7-

PKCI mice are not impaired in solving the Starmaze task. Our

results suggest that the Starmaze’s alleys are likely to reduce the

accumulation of path integration errors over time, preventing the

declarative component of spatial memory to be impaired in

mutants. This conclusion differs from the one drawn by Burguière

et al. [21], who interpret the absence of deficit in the Starmaze as a

proof that only procedural learning is impacted in L7-PKCI mice.

By contrast, we propose that both procedural and declarative

spatial learning are affected in L7-PKCI mice. However, in the

Starmaze, the impact of cerebellar adaptation deficits on the

accuracy of hippocampal place codes is likely not to be significant.

The relative contributions of procedural and declarative

components of spatial navigation can be estimated from our

results by comparing the performance of simulated mice with

(Fig. 4) and without (Fig. S4) the functional connection between

the cerebellum and the hippocampal formation. In the MWM, this

comparison suggests a stronger contribution of the declarative

component to spatial measures related to the knowledge of the

goal location (i.e. the fraction of time spent in the platform

quadrant and the distance mouse-platform). This is not surprising,

since a more accurate spatial map leads to more efficient

exploitative actions leading towards the goal.

The cerebellar role in path integration
Our prediction on the cerebellar role in path integration is in

line with earlier proposals [92–94]. More recently, Korelusova et

al. [95] observed that, in a group of lurcher mice, those mice that

in addition suffered from a retinal degeneration were not able to

use idiothetic navigation to solve a spatial orientation task. These

results suggested that lurcher animals can not integrate self-motion

information, and thus reinforce the plausibility of the hypothesis

that cerebellar computation can be instrumental in path

integration. The hypothesis of a cerebellar role in path integration

is also in agreement with recent experimental findings on monkeys

S
pa

tia
l r

ep
re

se
nt

at
io

n 
ac

cu
ra

cy
 (%

)

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

Control
L7-PKCI 

Time (min)
Completed environment exploration (control)

Completed environment exploration (L7-PKCI)

******

Figure 9. Cerebellar adaptation deficits impact the exploratory behaviour of simulated L7-PKCI mice. Time course of the spatial
representation accuracy as a function of exploration time for both simulated controls and mutants undertaking a free-exploration task.
doi:10.1371/journal.pone.0032560.g009

Cerebellar Learning Shapes Spatial Memory

PLoS ONE | www.plosone.org 13 April 2012 | Volume 7 | Issue 4 | e32560



demonstrating that the cerebellar circuit is implicated in acquiring

and processing information necessary for spatial orientation and

self-motion perception [96–98]. Shaikh et al. [96] proposed that a

role of the cerebellum in spatial orientation could be to transform

motion related signals in different reference frames usable to

encode body motion. The authors demonstrated that activities of

motion-sensitive neurons in the rostral fastigial nucleus have a

distributed representation in different reference frames, whereas

cells in the vestibular nuclei primarily encode motion in an

egocentric reference frame. These results suggest that the

cerebellum may transform body coordinates in different reference

frames that might be usable to encode body motion. In a more

recent study, Yakusheva et al. [97] made a similar observation and

showed that cerebellar cortical activity in nodulus and uvula

(lobules X and IX of the vermis) reflects the critical computations

of transforming head-centred (egocentric) vestibular afferent

information into world-centred (allocentric) self-motion and spatial

orientation signals. More precisely, the authors showed that

Purkinje cells of theses areas encode inertial motion. The Purkinje

cells in the nodulus and uvula appear to carry the world-horizontal

component of spatially transformed and temporally integrated

rotation signals. This transformation appears critical for extracting

the inertial linear accelerations during navigation, and thus

providing the information to brain areas involved in the retention

of spatial memories [97,98]. Very recently, Rocherfort et al. [99]

demonstrated that the hippocampal place code may be impaired

when L7-PKCI mice primarily rely on self-motion cues. The

authors suggest that cerebellar PKC-dependent mechanisms –

such as cerebellar LTD between PF–PC synapses – are involved in

the shaping of hippocampal spatial representations. In agreement

with our conclusions, the authors postulate that the cerebellum is

likely to be involved in the processing of self-motion signals [99].

Anatomical evidence also supports this functional hypothesis.

The flocculonodular lobe (the vestibulo-cerebellum) has primary

connections with the vestibular nuclei [100,101], and it also

receives visual inputs. The vestibulo-cerebellar tract carries

information from the semi-circular canals of the inner ear to

the cerebellum via the vestibular nucleus located in the lower

pons and medulla. In addition, the reticulo-cerebellar tract

conveys signals received by the reticular nuclei in various parts of

the brainstem from the cortex, spinal cord, vestibular system and

red nucleus. Then, the medial zone of the anterior and posterior

lobes (which constitutes the spinocerebellum or paleocerebellum)

receives proprioceptive inputs from the dorsal columns of the

spinal cord and from the trigeminal nerve [102], as well as from

visual and auditory systems [103]. It sends fibres to the deep

cerebellar nuclei that, in turn, project to both the cerebral cortex

and the brainstem, thus providing modulation of descending

motor systems.

The cerebellum is likely to encode the dynamics of body limbs by

using this idiothetic information and an efference copy of the motor

command. When the cortex sends a motor command to lower motor

neurons in the brainstem and spinal cord, a copy of this message

reaches the cerebellum through the cortico-pontine-cerebellar tract

[103]. There is strong evidence for the cerebellum to predict future

states of the limbs by using this efference copy [104–106]. As a

consequence, it is plausible that the cerebellum provides an estimates

of the future state of the whole body (position, orientation, speed) to

refine sensory feedback information.

Cerebellar adaptation influences hippocampal place
coding

An important prediction of this work is at the level of neuronal

activity of hippocampal place cells. The presented results provide

new insights on how dysfunctions at the cerebellar plasticity level

could have observable implications on the construction of

hippocampal place maps. A possible impact may concern the

shaping of place fields, and in particular the multimodal vs.

unimodal characteristics of spatially selective activity profiles – i.e.

the mean number of peaks of hippocampal receptive fields. In our

analyses, this discrepancy is one of the signatures of suboptimal

population place coding in the simulated L7-PKCI mice. This

hypothesis can be tested by performing electrophysiological

recordings of pyramidal cells in the hippocampal formation (both

CA1–CA3 place cells and entorhinal grid cells) of L7-PKCI mice

solving open-field spatial tasks. We expect to have larger unitary

place coding differences when idiothetic cues are the main source

of information for place learning.

The role of the cerebellum in exploratory behaviour
Another prediction derived from our results concerns the

consequences of suboptimal spatial coding in L7-PKCI mice for

exploratory behaviour. In our model, the probability of circling

behaviour depends directly on the quality of the hippocampal

spatial code. Since simulated L7-PKCI mice have less accurate

spatial representations than controls, they express an increased

circling behaviour, in agreement with experimental data [18]. Our

results suggest a bias in L7-PKCIs’ exploration-exploitation

balance towards exploration. We predict that in the free

exploration paradigm proposed by Fonio et al. [86], L7-PKCI

mice should exhibit a delayed switch between ‘‘macro degrees of

freedom’’ compared to controls (e.g. from exploration of near-wall

areas to incursions into the centre of the environment). According

to our model, this observable behavioural differences between

mutant and control animals would be due to local procedural

deficits and impaired integration of idiothetic movements.

Therefore, conducting this experiment in darkness, which

increases the importance of idiothetic cues, may result in more

significant intergroup behavioural differences.

Relation to other experimental data
We now discuss and re-interpret available experimental data

within our theoretical framework. The first evidence for a

cerebellar role in spatial behaviour dates back to Lalonde et al.

[42,92,93], who assessed the navigation abilities of weaver,

staggerer and lurcher mutants in comparison to control mice –

weaver mutants present a selective degeneration of cerebellar

granule cells; staggerer mice lose cerebellar Purkinje cells, granules

cells and inferior olive neurons; and lurcher mutants present a

degeneration of the olivo-cerebellar system. All three types of

mutants have deficits in the acquisition of maze learning, with

different degrees of severity [42,92,93]. Although these studies

suggested that procedural memory was likely to be primarily

affected, they could not dissociate the relative importance of

procedural and declarative memories in the observed deficits.

Also, the cerebellar ataxia produced by such mutations and the

subsequent visuo-motor deficits (e.g. lurcher mutants had

difficulties in navigating toward a visible goal [93]) made it

difficult to interpret the observed procedural impairments. In the

light of our results, we suggest that weaver, staggerer and lurcher

mice may have developed local and global procedural impair-

ments. Also, depending on the complexity of the task, mice could

have suffered from a delay in the establishment of declarative

memories compared to control animals. This would also explain

the deficit observed experimentally in maze learning with

staggerer mice [92].

A series of studies using hemicerebellectomised (HCbed) rats

demonstrated that cerebellar specific lesions impair the develop-
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ment of efficient exploration strategies [19,44,107]. These works

suggested that the cerebellar network might be involved in the

acquisition of all procedural components necessary for optimal

spatial behaviour [44], as well as in acquiring new behaviours and

in modifying them in relation to contextual information [19]. The

authors also examined the influence of cerebellar lesions on

spatial exploration in the presence of different spatial distributions

of multiple rewards. In all configurations, lesioned animals had

impaired exploratory behaviour [107]. Other works have

addressed the specific functions of hippocampal and cerebellar

networks in learning spatial procedural strategies [108,109]. The

authors investigated the role of NMDA receptors in the

exploratory behaviour of rats, and the influence of isolated

hippocampal and cerebellar lesions. Leggio et al. [108] reported

that in the presence of a lesioned hippocampal formation, the

NMDA receptor antagonist influences the acquisition of spatial

procedures – it is known that NMDA-dependent LTP in the

hippocampus is not essential for spatial procedural learning

[110]. Federico et al. [109] showed that the injection of NMDA

antagonist mimics the consequences of cerebellar ablation, thus

suggesting that the cerebellum – via the activity of NMDA

receptors – could be involved in the acquisition of spatial

procedures. The conclusions provided by our quantitative study

are consistent with all these results and corroborate the

hypothesis that both local and global components of spatial

cognition are influenced by cerebellar processing – i.e. respec-

tively, a local optimisation of the trajectory, and the efficient

learning and use of global procedures for optimally solving a

spatial task [44]. However, our study does not address the lack of

flexibility in changing behaviours observed in HCbed rats

[19,44].

Petrosini et al. [43] observed that HCbed rats succeeded in

navigating towards a platform in pure place learning paradigms –

such as finding a hidden platform from sequentially changed

starting positions. However, HCbed rats showed significantly

lower spatial learning abilities than controls [43]. Subsequent

interpretations of these results focused on the cerebellar contribu-

tion to procedural spatial learning and neglected possible

involvements in building spatial maps [19,37,44]. The study

presented here postulates a role of the cerebellum in path

integration and suggests that an affected idiothetic-based naviga-

tion may account for the observed delay in the ability to learn

spatial maps – in addition to the local procedural deficit. Our

results propose that the declarative-like impairment might only

slightly affect rodents in tasks where idiothetic and allothetic

information is available, but could be accentuated in tasks where

self-motion related signals are the main source of information, or

in paradigms where the two types of cues are set in conflict.

In another study using HCbed rats, Mandolesi et al. [37]

investigated the relationship between procedural and declarative

spatial knowledge. The authors pointed out that no declarative

learning was possible without appropriate procedural spatial

learning: HCbed rats were not able to represent a new environment

because they were not able to explore it appropriately [37]. It is

interesting to call attention to a possible reverse interaction between

procedural and declarative memories supported by data demon-

strating the emergence of a stereotyped exploration behaviour in

freely moving animals [86]. In the light of our results, we make the

hypothesis that rodents can not appropriately explore the

environment, unless they can efficiently represent the dimensions

of this environment. In the experiment by Burguière et al. [21], this

is illustrated by mutants’ longer thigmotaxic behaviour compared to

controls. Our results indicate that this difference can be understood

in terms of the interaction between declarative and procedural

memories, suggesting that the inhibition of a circling behaviour will

be favoured by a better knowledge of the near-wall portions of the

environment. Therefore, we extend the observation made by

Mandolesi et al. [37], and propose that a deficit in procedural

components when performing a navigation task should be taken

carefully, and would sometimes need to be discussed in terms of a

possible influence of the declarative learning on procedural

memories.

Limitations of the model
In our model, both LTD and LTP at PF–PC synapses allow

the simulated cerebellar microcomplex to learn sensorimotor

associations during spatial navigation. This view is in line with

previous proposals on the role of cerebellar LTD in procedural

learning and, in particular, in motor control adaptation [111].

Importantly, recent works have re-examined the functional role

of cerebellar PF–PC LTD and suggested that this synaptic

plasticity mechanism might not be essential to motor learning.

Schonewille et al. [112] tested three different types of mutant

mice lacking PF–PC LTD in numerous cerebellar-dependent

coordination tasks and did not observe any motor learning

impairment. Alternatively, the authors suggested that homosy-

naptic LTP at PF–PC synapses is likely to be critical to mediate

motor adaptation in vestibulo-ocular reflex (VOR) and delay

eyeblink conditioning tasks [113]. First, it should be observed that

even if LTD does not appear to be necessary for simple motor

learning such as VOR and eyeblink conditioning, it remains

unclear to what extent this result could be generalised to

sensorimotor associative learning involved in spatial navigation.

Second, as remarked by Schonewille et al. [112], it is not

excluded that other cerebellar plasticity mechanisms may

compensate for a deficient LTD at PF–PC synapses. Third, even

if LTD had no functional implications in motor adaptation, the

hypothesis of a cerebellar role in building internal models would

remain plausible – although the mechanisms underlying the

online shaping of built models would need to be redefined.

Nevertheless, the current debate on the functional roles of LTD

and LTP in cerebellar learning confirms the importance of

including other plasticity sites in an extension of the presented

model.

Supporting Information

Figure S1 Coding scheme for the inverse corrector
implemented by the cerebellar microcomplex model.
Example of error encoding and output decoding for a positive

correction of the right-side paws of the simulated mouse. The

teaching signal encodes the angular error, that is the difference

between desired �hh and actual h angular deviation. Here, the

angular error �hh{h indicates that the velocity of right fore-and-

hind paws must increase, i.e. Dvrw0. Then, the mean firing rate of

IO neurons is set to rvz
r

(t)~10 Hz, which makes LTD to take over

LTP in the active PF–PC synapses of the corresponding

microcomplex. The consequent decrease of PF–PC synaptic

efficacy reduces the inhibitory action of PCs onto DCN neurons.

Hence, the next time the microcomplex will receive the same

contextual input, the average population activity of DCN neurons

Sn(t)T will increase, reinforcing the correction signal Dvz
r (t).

(EPS)

Figure S2 Coding scheme for the forward predictor
implemented by the cerebellar microcomplex model.
Example of error encoding and output decoding for the predicted

rotation of the simulated mouse. The teaching signal encodes the

actual rotation h reached by the simulated animal after the

Cerebellar Learning Shapes Spatial Memory

PLoS ONE | www.plosone.org 15 April 2012 | Volume 7 | Issue 4 | e32560



execution of the last motor command. The firing rates of IO cells

ri(t) vary according to a set of radial basis functions spanning the

h state space uniformly. A group of two IO cells share the same

preferred angle and each group targets two distinct PCs, which in

turn inhibit a single DCN unit. The latter codes for the same

portion of the h state space (and has the same preferred angle hi)

than the two IO cells that modulate its inhibitory PC afferents.

Depending on the firing rate of a group of two IO cells, three

cases must be distinguished and are shown in the figure: (i) if the

firing rate of the two IO cells with preferred angle hi is ri(t)&1
Hz (r1 in this example), then LTD and LTP at PF–PC synapses of

the two PCs driven by these two IO cells compensate each other

and no learning occurs. The corresponding DCN neuron tends to

stabilise its spike frequency (n1); (ii) if the firing rate of the two IO

cells with preferred angle hi is 0ƒri(t)v1 Hz (rn{1 and rn in this

example), then LTP dominates and the corresponding DCN

neuron tends to decrease its spike frequency (nn{1 and nn); (iii) if

the firing rate of the two IO cells with preferred angle hi is

1vri(t)ƒ10 Hz (r2 in this example), then LTD dominates LTP

at the PF–PC synapses of the two PCs driven by these two IO

cells. Thus, over training, the DCN unit whose preferred angle is

close to hi tends to increase its firing activity (n2 in this example).

As a consequence, the decoding scheme used to readout the

population activity of DCN neurons will tend towards an estimate

of the next angular displacement ĥh close to h(t). (The color code

used to describe the intensity of neuronal discharges is the

following: white for no activity, light blue for low activity, and

dark blue for high activity).

(EPS)

Figure S3 Adaptation in forward predictor and inverse
corrector cerebellar models. A. Three examples of normal-

ised prediction error for the angular position as a function of

motor command presentations. B. Mean number of presenta-

tions – averaged over 100 different motor commands – needed to

create reliable context-response associations. Similar findings

hold for the prediction of travelled distances (not shown). C.
Time-course of forward predictor learning over the entire

training in the MWM. Data points are averages over all animals

(n = 15 controls and n = 15 mutants) and all trials (n = 4) per day.

Right y-axis: absolute number of learnt context-response

associations. D. Mean prediction error for linear displacements.

E. Mean prediction error for angular displacements. F. Three

samples of residual normalised angular error as a function of

number of desired state presentations. G. Mean normalised

angular error averaged over 100 distinct desired states. H. Time

course of inverse corrector performance gain of controls relative

to mutants. The performance gain accounts for both distance and

angular residual errors, and it is averaged over all animals and all

trials of a day:
SeCTRL

d zeCTRL
h T

n, m

SeL7PKCI
d zeL7PKCI

h T
n, m

, with n = 15 animals,

m = 4 trials per day, ed~�dd(t){d(tzDt), and eh~�hh(t){h(tzDt).
I. Mean residual translational error. J. Mean residual rotational

error.

(EPS)

Figure S4 The hypothesis of a purely local procedural
deficit in L7-PKCI mice does not account for all mutants’
spatial navigation impairments observed experimental-
ly. Simulation results are shown in the main diagrams, whereas

the corresponding experimental findigs are shown in the insets.

Results in the MWM: A. Mean escape latency over training of

simulated controls and mutants. B. Mean angular deviation

between ideal and actual trajectory to the goal. C. Ratio between

the time spent in the platform quadrant and the duration of a trial.

D. Mean distance of the simulated mouse to the platform.

Results in the Starmaze: E. Mean number of visited alleys. F.
Mean distance swum in the Starmaze.

(EPS)

Figure S5 Samples of navigation trajectories. Examples of

trajectories in the MWM for control (top) and mutant (bottom)

simulated animals at different stages of training.

(EPS)

Figure S6 The hypothesis of a global spatial behaviour
deficit of L7-PKCI mice accounts for all mutants’
navigation impairments observed experimentally. Re-
sults in the MWM: A. Mean escape latency over training (left y-

axis) and score (right y-axis) of simulated controls and mutants. B.
Correlation between searching score and escape latency for

control (top) and mutant (bottom) simulated mice. C. Mean

angular deviation between ideal and actual trajectory to the goal.

D. Ratio between the time spent in the platform quadrant and the

total duration of a trial. E. Mean distance of the simulated mouse

to the platform. F. Mean circling time. Results in the
Starmaze: G. Mean number of visited alleys. H. Mean distance

swum in the Starmaze.

(EPS)

Supplementary Methods S1 Cerebellar microcomplex
model. This document provides equations and parameter settings

related to the cerebellar microcomplex model, the connectivity

layout, the coding scheme and the learning rules shaping the

dynamics of the network.

(PDF)

Supplementary Methods S2 Statistical analyses of neural
activities. This document provides a description of the set of

statistical measures used to characterise the model neural code.

(PDF)

Supplementary Results S1 Adaptation in forward and
inverse cerebellar models. This document provides our

simulation results related to the adaptation performance of

simulated forward and inverse models.

(PDF)

Supplementary Results S2 Cerebellar role in local
procedural spatial learning. This document provides our

results in a simulation where the procedural component of

navigation is isolated, and demonstrates that a purely local

sensorimotor adaptation deficit cannot account for navigation

impairments observed experimentally in mutants.

(PDF)

Supplementary Results S3 Cerebellar role in global
tuning of spatial behaviour. This document describes how

differences between mutants and controls in the accuracy of the

spatial code may result in differences in balancing exploration and

exploitation behaviour.

(PDF)
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