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Abstract

In recent years, roboticians have taken biology as a source of inspiration and

have tried with increasing e�ort to reproduce biological functions and structures

in arti�cial systems. In particular, robotics and neuro-engineering have been

merging more and more often into a unitary discipline that tries to reproduce basic

principles of the nervous system with a double goal: (i) make robots interact with

the world in a human-like fashion and (ii) exploit arti�cial models as benchmarks

for testing novel scienti�c hypotheses. Following these two objectives, the work

presented in this thesis places itself in the �eld of neuro-robotics and has been

carried out to develop a closed loop neural architecture for active sensing and �ne

touch discrimination.

The system consists of several modules. To reproduce the same neural coding

principles as those observed at the periphery of the somatosensory pathway, two

computational models emulating the spiking dynamics of primary a�erents and

cuneate neurons were implemented. The information transmitted through these

�rst two stages of processing was quanti�ed via information theory analysis tools.

In a real-world application, the mechanoreceptor model was coupled to an arti�cial

�ngertip. Second order neuron responses to primary a�erent signals were supplied

to a classi�er, which computed the probability estimates of the stimulus being

delivered. Such probabilities were not only used to recognize the stimulus but

also to devise a movement policy for the �ngertip in a dynamic recognition task

scenario. The closed loop system was completed with a neuro-mimetic model of

the cerebellum implementing a low-level controller for the �ngertip movements.

Testing the closed loop architecture on a Braille reading task showed that

both primary a�erent and cuneate neuron populations e�ciently and reliably

transmitted enough information to perform a perfect discrimination. Stimulus

spatial patterns were mapped by primary a�erent activity during the scanning

of Braille characters. Perceptual ambiguities were resolved by the processing

operated at the cuneate nucleus level. Relying on second order neuron activity,

the classi�er was capable of performing a complete discrimination of stimulus

patterns. The control loop was closed by modulating the �ngertip scanning

velocity in order to speed up reading according to contextual information.

The presented neural architecture can be extended to further study both the

neural bases of �ne touch in humans, and neuro-mimetic solutions for processing



tactile signals in humanoid robots. Eventually, the neural system could help

investigate biologically plausible sensory feedbacks in neuroprosthetic

applications.
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Résumé

L'observation des êtres vivants interagissant avec leur environnement a

permis de constater l'importance du rôle joué par la perception tactile. Ceci a

amené à doter un nombre croissant de systèmes robotiques modernes, destinés à

opérer dans des environnements réels non contrôlés, de capacités tactiles

avancées. Etant donné les performances observées dans les systèmes biologiques,

les solutions robotiques développées sont souvent inspirées et comparées aux

mécanismes physiologiques permettant la perception tactile. Cette approche a

pour double avantage (i) d'améliorer les capacités de robots en imitant les

principes sous-tendant la précision et l'e�cacité des systèmes biologiques, et (ii)
d'utiliser les systèmes arti�ciels pour étudier de manière théorique de nouvelles

hypothèses scienti�ques. S'inscrivant dans ce cadre, les travaux réalisés pour

cette thèse ont porté sur la reproduction des mécanismes d'encodage de

l'information tactile au sein d'une nouvelle architecture neuro-computationnelle.

Ce système modélise la boucle de contrôle sensorimotrice lors de tâches de

toucher actif et de discrimination �ne.

L'architecture conçue comprend des modèles bio-mimétiques reproduisant les

mécanismes d'encodage de l'information tactile par les neurones du premier et

second ordre du système somatosensoriel périphérique. Les signaux neuronaux

à la sortie de ces modèles sont interprétés par des processus de discrimination

et de décision de mouvement qui simulent les traitements s'opérant au niveau

cortical. Finalement, la boucle de contrôle est fermée par un modèle bio-inspiré

du cervelet corrigeant les erreurs de trajectoire lors du déplacement du système.

Une implémentation neuro-robotique du système a été testée dans le contexte

d'une tâche de lecture de caractères Braille.

Des études reposant sur la théorie de l'information ont permis d'établir que

les modèles de neurones du premier et du second ordre encodent et transmettent

de manière �able et e�cace une quantité d'information su�sante pour permettre

une discrimination parfaite de l'ensemble des stimuli. Ceci résulte d'un encodage

des caractéristiques spatiales des stimuli dans l'activité des a�érents primaires

similaire à celui observé dans le système biologique. Ces signaux sont ensuite

traités par les neurones du noyau cunéiforme de manière à réduire les ambiguïtés

apparaissant dans l'encodage de di�érents stimuli. Une interprétation

probabiliste des signaux neuronaux à la sortie du noyau cunéiforme su�t alors



au processus de discrimination pour reconnaître l'ensemble des motifs des lettres

Braille. En fonction des informations délivrées par ce processus, la vitesse de

lecture est modulée a�n d'accélérer l'identi�cation des stimuli.

Le développement de ce système pourra contribuer à la compréhension des

bases neuronales du traitement de l'information tactile au niveau périphérique,

ainsi qu'au développement de solutions neuro-mimétiques pour améliorer les

capacités tactiles en robotique humanoïde. En émulant, dans un système

arti�ciel, les mécanismes de codage neuronal sous-tendant la perception tactile,

cette architecture vise également à participer à la conception de retours

sensoriels biologiquement plausibles dans des systèmes de neuro-prothèses.
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Chapter 1

Introduction

1.1 Context

Since their origins as industrial tools, robots have evolved to now play

important roles in a wide range of �elds. Applications as rehabilitation and

assistive robots, social robots, bio-robots, medical robots and humanoids are

growing more and more common with technological advancements. Initially the

subject of science �ction (Gates, 2007), robots are becoming a constant presence

in everyday life, assisting humans or replacing them in complex tasks. This has

led to an important paradigm shift in the �eld of robotics. Contrary to

manufacturing robots which only interacted with specialized sta�, the new types

of robots must prove capable of advanced (and safe) interaction with humans

and adaptable to changing environments in an autonomous way. Hence, the

importance of investigating human interaction with the world as to provide both

a starting point and a goal for designing new generation humanoids robots.

In general, controlled interaction with the environment requires sensory

information from several di�erent modalities such as vision, hearing, touch or

smell. Although the study of these modalities has been unequally divided, all

were shown to be important. In particular, the sense of touch has been found to

be essential when physical interactions with the environment are required. The

loss of cutaneous sensation (Westling and Johansson, 1984), or kinesthetic (Cole,

1995), induced subjects, which still had access to other sensory modalities, to no

longer maintain a stable grasp of objects or control their posture, respectively.

In e�ect, the sense of touch is an essential modality for retrieving object

properties such as shape, surface texture, sti�ness or temperature, which provide

feedback information during contact interactions. It also contributes to be aware

of the distinctions between one's body and his or her environment.

The sense of touch is the result of the somatosensory system. Contrary to

other sensory modalities, the system underlying cutaneous touch is spread across
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the entire body skin. Receptors responding to speci�c stimuli (eg. vibrations,

pressure, light touch, temperature etc. . . , see Purves et al., 2008) are located in

the dermis and epidermis to detect and transmit sensory information to central

areas of the nervous system. Though extracting di�erent features of the stimuli,

all receptor types function in a similar way. When contact is made with an

object, the skin's properties are altered as it conforms to the object's surface.

Heat transfers to the skin induce responses from thermoceptors, while the skin

deformation is recorded by a large number of mechanoreceptors. Stimulus

features (eg. amplitude, local curvature, roughness, etc. . . ) are transformed by

mechanoreceptors into trains of action potentials (Adrian, 1926b), somewhat

akin to a digital signal. Overall spatial properties of the stimulus are processed

in parallel by a population of receptors. Signals are mediated by a multistage

processing before reaching central areas (Hsiao and Yau, 2008).

At the �rst stages of the somatosensory pathway, mechanoreceptor responses

are transmitted to second order neurons, located in the dorsal column nuclei of the

brainstem, according to a somatotopic organization (Whitsel et al., 1969; Leiras

et al., 2010). Cuneate neurons decode and re-encode primary signals prior to

their transmission to thalamic and subsequently to cortical areas that mediate

downstream experience-dependent haptic percepts (Fy�e et al., 1986b; Marino

et al., 2001). In the case of active sensing tasks, an adaptive control closes the

perception-action loop (Johansson and Flanagan, 2009). For this, motor control

processes and sensory systems tightly interact to optimize information acquisition.

Sensory signals are used to modulate movement policies and generate exploratory

behaviors, notably by anticipating future sensory inputs (Lederman and Klatzky,

1993; Grant et al., 2009). Conversely, motor signals are used through mechanisms

such as e�erence copy (Blakemore et al., 2000) or more broadly corollary discharge

(Crapse and Sommer, 2008) to compensate for unwanted sensory signals resulting

from the movement.

1.2 Objectives

The principles of e�ciency and robustness that underly the behavior of

biological systems have often been a source of inspiration for the work of

engineers (Brooks, 1991; Bekey, 2005; Pfeifer et al., 2007). Following these

principles, an increasing amount of attention is being brought to imitating the
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biological mechanisms behind the sense of touch (Lederman and Pawluk, 1992;

Pfeifer et al., 2007; Maheshwari and Saraf, 2008; Dahiya et al., 2010; Loeb et al.,

2011a; Dahiya and Valle, 2013). However, if most of these studies show an

interest on how the somatosensory system processes information about touch,

they especially stress the relevance of functional bio-mimetism for the

development of new touch sensors. Although there exists an extensive body of

experimental, theoretical and neuro-computational studies on the neural coding

mechanisms behind tactile sensation (Hsiao and Yau, 2008; Johansson and

Flanagan, 2009; Mackevicius et al., 2012; Lederman and Klatzky, 2009), most

applications, though not all (Spigler et al., 2012; Ratnasingam and McGinnity,

2011b), remain only distantly related to their biological sources. To the best of

our knowledge, no uni�ed architecture mirroring the multistage neural coding

mechanisms underlying the peripheral to central transmission of �ne touch

percepts and their use for active exploration has yet been proposed.

This manuscript addresses this by presenting a closed loop, neuro-robotic

architecture capable of performing �ne touch discrimination. A computational

model of mechanoreceptive a�erents and of the cuneate network was established

on the basis of the neural coding principles observed at these stages of the

somatosensory system. The output signals of these models were analyzed using

theoretical tools in order to assess the quality of the encoding. Second order

output signals were also fed to a probabilistic classi�er tasked with decoding the

tactile information. A closed loop system was built by associating the

mechanoreceptor model with an arti�cial �ngertip, whose position was

modulated according to the classi�cation results. In addition, a neuro-mimetic

model of the cerebellum was used for the low-level control of the �ngertip

position. This architecture was tested using a real robotic implementation for

which the capacitive sensors were �xed to a robotic hand-arm system to act as

the arti�cial skin of the �ngertip. The architecture was tested using a Braille

reading protocol.

The main goal of this work was to develop a novel neural architecture relying

on the coding and processing principles observed in the human peripheral

somatosensory system to allow the discrimination of coarse textures and

embossed surfaces by tactile robotic devices.

Other than contributing to the development of haptic robotics for real world

applications, this study has two objectives. On the neural engineering side,

accounting for the neural coding principles of the tactile information
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transmission might contribute to providing neuroprosthetic devices (Nicolelis

and Lebedev, 2009; Hochberg et al., 2012) with biologically plausible sensory

feedbacks (Raspopovic et al., 2012). On the neurobiology side, and on the

mid-term, the proposed neuro-engineering approach might be useful to test

hypotheses on how primary contact features are encoded/decoded along the

ascending somatosensory pathway and used for further processing.

1.3 Road map of the dissertation

This thesis consists of two main parts. The �rst of these parts (chapters 2 to

4) reviews the anatomo-functional properties of the somatosensory system and

presents some neural coding mechanisms underlying �ne touch discrimination.

The second (chapters 5 to 7) presents the neuro-robotic architecture inspired by

the anatomo-functional and neural coding properties described in the �rst part.

The topics considered in each chapter are:

Chapter 1 introduces the context, nature and objectives of this work.

Chapter 2 reviews the anatomo-functional properties of the human

somatosensory system. With the neuro-robotic architecture in mind, the

emphasis has been placed on the peripheral ascending pathways conveying

�ne touch information.

Chapter 3 describes neural coding mechanisms and their role in �ne touch

sensory coding.

Chapter 4 illustrates the coding in primary a�erents through a theoretical

analysis performed on microneurography recordings.

Chapter 5 reviews how di�erent stages of the architecture have been addressed

in other neural engineering and modeling studies.

Chapter 6 presents the closed loop system along with its di�erent components.

Chapter 7 describes the performance of the neuro-robotic system in a Braille

reading task.

Chapter 8 discusses the system's results and limitations, and addresses possible

future improvements.
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1.4 Terminology

The sense of touch in humans is composed of two main sub-modalities:

kinesthetic and cutaneous. They are characterized by the origin of their sensory

inputs. Cutaneous sense receives inputs from the skin whereas kinesthetic

receptors are located in muscles, tendons and joints (Loomis and Lederman,

1986). The cutaneous information provides contact information about the

environment, while the kinesthetic systems informs on static and dynamic body

postures. For what is known as haptic perception, both sub-modalities are

combined (Loomis and Lederman, 1986). Tactile perception refers to the

perception originating solely from cutaneous stimulation.

The sense of touch can be described as either active or passive depending on the

context. Active touch is de�ned by the addition of motor control inputs to the

a�erent information (Loomis and Lederman, 1986).

Fine touch, also known as discriminative touch, is a sensory modality which

allows the subject to localize the touch source. Conversely, when localization is

not possible it is called crude touch (or non-discriminative touch). The posterior

column-medial lemniscus pathway is the pathway responsible for sending �ne

touch information to the cerebral cortex of the brain (see chapter 2), while crude

touch is carried in the spinothalamic tract.

The neuro-robotic architecture developed in this study was designed to

perform discrimination of tactile percepts inspired by the neural coding

mechanisms underlying �ne touch. The system is closed loop, meaning that it

uses sensory information to modulate its movement behavior. An active sensing

policy has been implemented for it to quickly recognize di�erent stimuli;

however, motor signals were not directly used to help the discrimination.





Part II

Neural Bases of Fine Touch





Chapter 2

The somatosensory system

In the human nervous system, information underlying �ne touch is conveyed

from the periphery to central areas through the somatosensory system, which is

also responsible for supporting the other sensory modalities of touch, temperature,

proprioception and nociception. Information pertaining to all these modalities is

e�ectively combined in the central nervous system in order to create a complete

body image.

This chapter will provide an overview of the di�erent stages relaying sensory

information through the somatosensory system. Though the di�erent modalities

of the sense of touch are evoked, the focus has been placed on the sub-systems

underlying �ne touch functions. In particular, given the subject of the present

study, this chapter will concentrate on the pathway of sensory information

emanating from the �ngertips �which play an important role in �ne touch� and

focus particularly on the early stages of processing.

2.1 Overview of the human somatosensory
system

The ascending sensory system consists of three distinct pathways: the

anterolateral system, the dorsal column-medial lemniscal pathway, and the

somatosensory system to the cerebellum. All three pathways share a similar

organization comprising three stages of neurons relaying the sensory information

before it reaches the cerebral cortex. In the case of bodily sensation (with the

exception of the head and neck) �rst order neurons extend from the sensitive

zone (eg. skin, muscles, joints) to the dorsal root ganglia (DRG) of the spinal

cord where their cell body is located. Second order neurons are found in either

the spinal cord or the brainstem and project towards central areas such as the

thalamus, the reticular system, or the cerebellum. Although a partial functional
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Pathway Anatomical tracts Function

Anterolateral (ALS)

Spinothalamic

Pain, temperature,
crude touch, pressure
and proprioception

Spinothalamic
Spinomescencephalic
Spinotectal
Spinohypothalamic

Dorsal column-medial
lemniscal (DCML)

Fasciculus gracilis Fine touch, vibratory
sense, position senseFasciculus cuneatus

Somatosensory to the
cerebellum

Anterior spinocerebellar

Proprioception, pain
and pressure

Posterior spinocerebellar
Rostral spinocerebellar
Cuneocerebellar

Table 2.1: General description of the ascending sensory pathways. (adapted from Gartner
and Patestas, 2009)

overlap exists, each pathway primarily relays a unique set of information (see

table 2.1).

Fine or discriminative touch is mediated by the DCML pathway (cf. table 2.1).

Peripherally, it �nds its origin with mechanoreceptors (also referred to as primary

a�erents, mechanoreceptive a�erents or �rst order neurons) which extend from

the epidermis to the DRG and later project onto the cuneate and gracile nuclei

(which are composed of second order neurons) in the case of upper and lower

body sensation respectively. The axons of these second order neurons synapse

contralerally with thalamical neurons (third order neurons). Figure 2.1 provides

a schematic overview of the DCML pathway.

Functionally, the ascending somatosensory pathway can be divided into the

general somatic afferent system (GSA) which collects and transmits sensory

information originating from somatic structures, and the general visceral
afferent system (GVA) which plays a similar role for visceral structures.
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Thalamus
(VPLnucleus)

Primarysomatosensory
cortex

Thirdorder
neuron

Ininternal capsule
andcoronaradiata

Medial lemniscus

Cuneatenucleus

Gracilenucleus

Fasciculuscuneatus

Fasciculusgracilis

Primaryafferentneuron
indorsal rootganglion

Posteriorcolumn

Figure 2.1: The dorsal column–medial lemniscal pathway relaying discriminative touch
and vibratory sense from the body to the somatosensory cortex (VPL: ventral posterior
lateral). (adapted from Gartner and Patestas, 2009)
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2.2 Cutaneous receptors

Cutaneous sensation originates from thousands of cells, that can be described

as unipolar neurons, which innervate the skin's epidermis and dermis. The human

skin contains three types of such somatosensors: thermoceptors, nociceptors and

mechano-receptors respectively relaying information about temperature, pain and

mechanical forces (Lumpkin and Caterina, 2007). They vary according to their

morphology and modality of response but share a basic organization and function

in a similar way. A stimulus containing speci�c features to which a given cell

responds will elicit a mechanism of sensory transduction by which the stimulation

alters the ionic permeability of that cell's nerve ending and eventually leads to

the generation of action potentials (Lumpkin et al., 2010). The neural signals

thereby generated are propagated along the cell's axon towards the spinal cord

and the DRG nested in each vertebra.

The sensory a�erents are often classi�ed according to the speed of action

potential propagation, which itself is in�uenced by the myelin thickness around

the axon. Aα and Aβ �bers are thickly myelinated cells having a low response

threshold and are believed to correspond to sensors relevant for light-touch.

Conversely, slower-conducting, small diameter myelinated Aδ �bers, and

unmyelinated C �bers belong to nociceptive and thermoceptive units (Gartner

and Patestas, 2009). The cutaneous mechanoreceptors associated with �ne

touch are believed to rely on Aβ �bers, Aα �bers being essentially used by

proprioceptive mechanoreceptors (Gartner and Patestas, 2009; Maricich et al.,

2009). However, some studies link either the highly conductive Aα (Johansson

and Vallbo, 1983) or both Aα and Aβ �ber types to �ne touch (Kandel et al.,

2000). It is also unclear whether or not conduction velocities vary depending on

the mechanoreceptor type and location, as most seem to remain between 35 and

80 mm/s, with a majority of a�erents over 50 mm/s (Johansson and Vallbo,

1983; Kakuda, 1992).

The speci�city of the di�erent mechanosensory signals originates in the

specialized cellular ending morphologies. However, tissue mechanics and

surrounding non-sensory cells also contribute to shape the response to

mechanical stimuli. Recent studies suggest that human tactile acuity is

in�uenced by the skin's macro-structure such as, for example, the �ngertip size,

surface curvature, and gross epidermal sti�ness, as well as its micro-structure

involving di�erent skin layers or the shape of �ngertip ridges (Cauna, 1954;
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Van Doren, 1989; Scheibert et al., 2009). Nontheless, mechanoreceptors seem to

be a�ected by these factors di�erently, depending on their type and properties

(Gerling and Thomas, 2008).

2.2.1 Primary afferent endings

Up to seven di�erent types of cutaneous and subcutaneous receptors are

recognized in humans (Kandel et al., 2000), however, only four are found in the

glabrous skin of the �ngertip. Fingertips possess one of the highest densities of

cutaneous receptors of the entire human body, each one being innervated by up

to 2000 mechanoreceptive units (Johansson and Vallbo, 1979). Consequently,

�ngers have been found to be particularly relevant in tasks of �ne touch and

precise manipulation (Johansson and Flanagan, 2009). The four receptors types

present in the �ngertips correspond to four di�erent encapsulations of the nerve

endings in the skin (�g 2.2):

Meissner’s corpuscule. Meissner corpuscles are found 0.3 mm deep in the

epidermis at a density of 130 units/cm2 (on the �ngertip). Their receptive �eld

usually remains small and well de�ned (around 10 mm2), and they are known to

be most sensitive (measured in terms of output �ring rate) to stimulation

frequencies around 50 Hz. These corpuscles are the endings of fast adapting type
I afferents (FAI).

Merkel cell. Merkel complexes are found in the basal epidermal layer of

touch-sensitive areas of the skin, at the tip of epidermal ridges. They are located

approximately 0.5 mm deep at a density of about 70 units/cm2 in the case of

�ngertips. Their receptive �elds usually span between 4 and 10 mm2. Studies

suggest that Merkel cells are activated by neurotransmitters that might be

released from either other sensory neurons, or from neighboring keratinocyte

cells (which predominantly compose the epidermis). It has also been suggested

that Merkel cell signaling might even be autocrine (Maricich et al., 2009),

meaning that the activation signal would be both generated and read by the cell

itself. The early loss of Merkel cells have been shown to prevent

mechanosensitivity in the linked a�erent, however, it remains unclear if these

cells retain their importance in later stages of development, as these symptoms

could not be reproduced in the case of a later loss (Lumpkin et al., 2010).

Merkel cells are associated to slow adapting type I afferents (SAI), which provide

information about pressures and textures or more generally low frequency (5 Hz
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Figure 2.2: A schematic view of the fingertip glabrous skin illustrating the endings of
the four different types of mechanoreceptive afferents, as well as the free nerve endings of
nociceptors. Meissner’s corpuscles are located in the tips of the dermal papillae, which
are as close to the surface of the skin within the dermis as is possible. A single axon can
innervate multiple Meissner’s corpuscles. The terminals of Merkel afferents are located
next to Merkel cells, which are specialized epidermal cells in the tips of the primary
epidermal ridges. A single afferent axon innervates many Merkel cells on several primary
ridges. Ruffini corpuscles are thought to be encapsulated strands of connective tissue and
nerve endings. The Pacinian corpuscles are located in the deeper parts of the dermis and
in the subcutaneous tissues. A single axon innervates a single Pacinian corpuscle and,
likewise, a single Pacinian corpuscle is innervated by a single afferent axon. (adapted
from Johnson, 2004; Mountcastle, 1974)
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Encapsulation Meissner’s
corpuscle

Merkel
cell

Pacinian
corpuscle

Ruffini
ending

Depth (mm) 0.3 0.5 2 1
Density (unit/cm2) 130 70 15 10
Receptive field (mm2) 10 10 100 60
Stimulation frequency High

(fopt ∼ 50Hz)
Low High

(fopt ∼ 250Hz)
Low

Mechanoreceptor type FAI SAI FAII SAII

Table 2.2: Overview of fingertip mechanoreceptor characteristics. (adapted from
Debrégeas et al., 2009)

or lower) skin deformations.

Pacinian corpuscle. Pacinian corpuscles are found in the deeper layers of the skin

as well as in the sub-cutaneous tissues. The nerve terminal is surrounded by layers

of concentric lamellae which �lter mechanical deformations so that only high-

frequency components reach the nerve terminal. Smaller and simpler lamellated

endings (Golgi-Mazzoni bodies) have also been observed and probably belong

to the same type of unit. They are located about 2 mm deep into the skin at

a density of approximately 15 units/cm2 on the �ngertip. They have a large

receptive �eld (approximately 100 mm2) and respond optimally to high frequency

vibrations usually between 200 and 300 Hz (Johansson et al., 1982; Bell et al.,

1994). Despite their large receptive �eld, they are useful for detecting �ne textures

(whose spatial oscillation period is lower than 200 µm), perhaps thanks to the help

of �ngerprint patterns (Debrégeas et al., 2009). Pacinian corpuscles are associated

to fast adapting type II afferents (FAII).

Ruffini corpuscle. Ru�ni corpuscles are receptors that are located in the dermis

and have a thin and spindle-shaped capsule. The nerve terminals are intermingled

with collagen �brils longitudinally passing through the corpuscle and anchoring

it in the dermal collagen at its poles, thereby providing the mechanical linkage

to the �brous tissues of the dermis. They are situated 1 mm deep at a density

of 30 units/cm2 in the glabrous skin of the �ngertip, and have large receptive

�elds of 60 mm2 of area. These receptors are the sensors of slow adapting type II
afferents (SAII).
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2.2.2 Functional classification of primary afferents

Table 2.2 provides an overview of the known characteristics of the di�erent

mechanoreceptor types. Apart from the morphological di�erences in their

encapsulation, mechanoreceptors can also be classi�ed according to their

functional properties (Johnson et al., 2000; Johnson, 2001). FA

mechanoreceptors are essentially phasic cells, meaning that they respond to

changes in the stimulus and are therefore particularly sensitive to dynamic or

transient deformations of the skin. Conversely, SA neurons are tonic in nature

and will respond continuously as long as a stimulation is applied. SA

mechanoreceptors are therefore more useful than FA neurons to recognize static

(or slowly varying) forces applied to the skin.

Both SA and FA neurons can be sub-categorized in a type I and type II.

Type I mechanoreceptors have smaller receptive �elds with sharper, well de�ned

borders which allows them to generate a high quality representation of local

spatial discontinuities. This property combined with their very high density on

the �ngertips allows for a high spatial acuity in �ne touch operations. On the

contrary, type II mechanoreceptors have large receptive �elds with smooth,

poorly de�ned borders. As a result, they can be stimulated by skin deformations

occurring far away from the center of their receptive �elds. They are less

numerous �they constitute only about 30% of the total number of a�erents in

the glabrous skin� and have a relatively low density which remains broadly

uniform across the entire hand (Vallbo and Johansson, 1984). Despite these

shortcomings, it is believed that they still provide important information

concerning high frequency vibrations �for FAII� or direction sensitivity to skin

stretch �for SAII (Knibestöl, 1975). Furthermore, although all four

mechanoreceptor types have been shown to respond on occasion to hand

movements, it is suggested that type II neurons in particular provide

proprioceptive information in addition to the exteroceptive information

(Johansson and Vallbo, 1983). Indeed, joint positions and movements seem to

elicit responses from type II a�erents (Hulliger et al., 1979). Psychophysical

studies also suggest that type II a�erents are useful for kinesthesia in the human

hand (Burgess et al., 1982).

A signi�cant di�erence between type I and type II mechanoreceptors

concerns the shape of their receptive �elds on the skin. Whereas type II

receptive �elds have only one point of maximal sensitivity �generally located
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Figure 2.3: Distinguishing properties of tactile afferent types in the glabrous skin of the
human hand. Columns show the firing mode (or equivalently the rate of adaptation).
Graphs represent schematically the spiking response (lower trace) to perpendicular
indentations of the skin (force of indentation is shown on the upper trace) for each
unit type. Rows indicate receptive field properties. Plots illustrate the spiking threshold
as a function of position of the indented probe on the skin. The minimal points of the
curve are the most sensitive areas (likely the center of the receptive field).

near the center of the sensitive zone� (Darian-Smith, 1984), type I receptive

�elds have a complex structure with multiple high-sensitivity points

(Darian-Smith, 1984; Phillips et al., 1992) called hotspots. Though no direct

evidence has been found, it can be supposed that hotspots are linked to the

structure of the a�erent endings (Johansson, 1978; Vallbo and Johansson, 1984).

As hotspots number between 12 and 17 and between 4 and 7 for FAI and SAI

a�erents respectively, it has been suggested that there may be as many

corresponding Meissner corpuscles and Merkel cells terminating each a�erent.

Figure 2.3 illustrates the functional classi�cation of the four di�erent types of

�ngertip cutaneous mechanoreceptors. Of the 17000 units innervating the

human hand, 43% are FAI a�erents, 13% are FAII, 25% are SAI and 19% are

SAII. This count however hides the fact that the highest densities of

mechanoreceptors are found on the �ngertips which collect up to 2000 a�erent

endings each (Johansson and Vallbo, 1979). In the �ngertips, type I

mechanoreceptors are present at considerably larger densities than their type II

equivalents (see table 2.2), suggesting a particularly important role of type I

a�erents in conveying �ne touch to the central areas of the nervous system.
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2.3 Dorsal column nuclei

Mechanoreceptive a�erents supporting �ne touch project to second order

neurons in the dorsal column nuclei. These are the cuneate nucleus and the

gracile nucleus which receive projections exclusively from a�erents of the upper

body (arms and trunk) and lower body (mainly the legs) respectively.

Consequently, sensory information originating from the �ngertips is relayed �rst

through cuneate neurons before reaching higher order areas.

2.3.1 Anatomy of the cuneate nucleus

Anatomically, the cuneate nucleus is composed of roughly three

distinguishable areas: the caudal, the middle and the rostral cuneate nucleus

(Berkley et al., 1986). The middle area can be further decomposed into the core

(central sub-area) and the shell (peripheral sub-area) (Fy�e et al., 1986a). The

core is essentially composed of a cluster of cuneothalamic neurons projecting

into the contralateral ventral posterior lateral thalamic (VPL) nucleus,

surrounded by local interneurons. The shell is basically made up of

interneurons. The caudal and rostral areas of the cuneate nucleus contain

interneurons and neurons projecting to other structures such as the cerebellum,

the spinal cord and other parts of the diencephalon (Berkley et al., 1986).

The cuneate nucleus mainly receives inputs from primary a�erents and

corticocuneate �bers originating from the contralateral sensorimotor cortex.

Within the middle area, primary a�erents establish connections with both

interneurons and projection neurons (Fy�e et al., 1986a), while the

cortico-cuneate make synaptic contact essentially with inhibitory interneurons in

the shell (Cheema et al., 1984). The cuneate nucleus also receives some inputs

from other sub-cortical nuclei (Hsiao and Yau, 2008).

2.3.2 Functional role of the cuneate nucleus

The cuneate nucleus has not been the subject of as many neurophysiological

studies as the peripheral a�erents or the primary somatosensory cortex have.

Given the evidence that has been acquired, the cuneate nucleus is usually

believed to be little more than a relay for a�erent signals emanating from
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cutaneous and proprioceptive structures. Indeed, there appears to be a quasi

equivalence between the �ring of cuneate neurons and that of their cutaneous

and proprioceptive a�erent inputs. In other terms, there is a high synaptic

e�cacy by which most pre-synaptic spikes appear to directly induce a

post-synaptic one (Amassian and Giblin, 1974; Hsiao and Yau, 2008). This

suggests that a�erent information is almost identically reproduced at the

cuneate level. This would also explain how cutaneous receptive �elds of neurons

located higher up in the somatosensory pathway manage to remain relatively

small �and even sometimes of comparable size to primary a�erent receptive

�elds� in the thalamus (Wang et al., 1995) . It is also noteworthy that

segregation between submodalities seems to exist already at the cuneate level

(Dykes et al., 1982; Kandel et al., 2000). All in all, very few modi�cations to the

informative signal seem to occur in this dorsal column nuclei.

Consequently, little convergence and divergence of sensory input is supposed

to take place at this stage. However, after observing the structure and

dimensions of cat cuneate neurons, it has been estimated that each

mechanoreceptive a�erent projects to approximately 1700 cuneate neurons and

that each cuneate neuron connects with some 300 a�erents (Jones, 2000). A

more recent study on decerebrated cats has pointed out that of these numerous

putative connections, less than 10 are actually functionally active �meaning that

they can actually elicit a post-synaptic potential (Bengtsson et al., 2013).

Somewhat coherently, the same study has recorded cutaneous receptive �elds of

cuneate neurons approximately twice as large as their peripheral a�erent

counterparts (at 20 ± 17 mm2 and 12 ± 10 mm2 respectively).

Evidently, this does not mean that no processing takes place in the cuneate

nucleus. Indeed, a computational approach has allowed to suggest that a small

number of high e�cacy synapses might be well suited for an e�cient transmission

of information allowing an optimal discrimination of signals downstream of the

cuneate nucleus (Brasselet et al., 2009; Bengtsson et al., 2013).

Furthermore, the case for a cuneate processing of tactile signals is further

supported by experimental evidence on the existence of more complex

center-surround receptive �elds in the cuneate nucleus (Canedo and Aguilar,

2000). Center-surround receptive �elds possess an excitatory center surrounded

by an inhibitory neighborhood and are particularly well known for their role in

the processing of visual signals (Ku�er, 1953; Wiesel and Hubel, 1966). The

surround inhibition is at least in part generated by fast a�erent connections and
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may serve to e�ectively reduce the size of cuneate receptive �elds. Feedback

signals from the sensorimotor cortex (both excitatory and inhibitory) have been

observed (Gordon and Jukes, 1964; Canedo and Aguilar, 2000). Though the

exact role of these feedback signals remains unknown, it is hypothesized that

they may facilitate the information �ow notably by enhancing the temporal

precision of spikes (Canedo and Aguilar, 2000).

The cuneate nucleus' complex structure suggests that its role, as previously

pointed out, is more than that of a synaptic relay for tactile information. However,

its precise dynamics and function remain largely unknown for the time being.

2.4 Thalamus

Second order neurons from the cuneate nucleus (and more generally from the

dorsal column nuclei) send projections through the medial lemniscus tract to

synapse with type I cells in the contralateral ventral posterior lateral (VPL)
nucleus of the thalamus. The thalamus also receives inputs from primary

a�erents through the dorsal horn of the spinal cord. The output of the VPL

network is sent, with varying strength, to the primary somatosensory cortex (SI)

�areas 3a, 3b, 1 and 2� and, to a lesser extent, to the secondary somatosensory

cortex (SII).

The VPL is organized as an ensemble of rod-like structures which can be

functionally segregated into a core and two successive surrounding regions. The

core is composed of cells which have observed properties similar to SAI

peripheral a�erents. Neurons in the �rst surrounding regions have larger

receptive �elds and can be either slow or fast adaptive-like neurons. The

outermost shell contains cells that respond to deep or proprioceptive inputs.

The core region sends projections to areas 3b and 1 of SI, suggesting that these

are the areas responsible for processing �ne touch signals. On the contrary, the

shell projects towards areas 3a and 2 of SI, which are consequently thought to

process proprioceptive information (�g. 2.4).

Thalamic pathways relaying information to the cortex are well segregated,

usually responsible for a speci�c sub-modality, such as whisker motion (in rats)

and �ne touch which are relayed via distinct thalamic neuronal populations (Yu

et al., 2006; Diamond et al., 2008).
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Figure 2.4: A schematic view of the functional connectivity between the dorsal column
nuclei (DCN), the ventral posterior lateral of the thalamus (VPL) and the primary
somatosensory cortex (SI) regions. (adapted from Hsiao and Yau, 2008)

Similarly to the cuneate nucleus, little functional convergence and divergence

is believed to occur in the VPL. However, there are important feedback loops

between the cortex and the thalamus which modulate the activity transmission.

Studies in rats have allowed to know more about the e�ects of the thalamocortical

loops. Top-down modulation has notably been found to alter the transmission of

information based on past experience (Ghazanfar and Nicolelis, 1997; Ego-Stengel

et al., 2012), motor activity (Lee et al., 2008) and reward expectation (Pantoja

et al., 2007). This modulation was important for explaining activity di�erences

between active and passive touch in the rat vibrissal system (Fanselow et al., 2001;

Nicolelis, 2005; Pais-Vieira et al., 2013).

2.5 Somatosensory cortex

Third order neurons in the thalamus primarily send their axons to the primary

somatosensory cortex (SI) located in the postcentral gyrus of the parietal lobe.

SI contains four di�erent areas: Broadmann's areas 3a, 3b, 1, 2 (Kandel et al.,

2000). Most thalamic �bers project to areas 3a and 3b and, to a lesser extent, to

areas 1 and 2 of SI. However, extensive connections between di�erent regions of SI

have been observed (see �g. 2.4), which suggests that regions 1 and 2 might play

more of an integrative role with inputs from the thalamus as well as areas 3a and
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3b of SI. The secondary somatosensory cortex (SII) is located in the second bank

of the lateral �ssure and is innervated from each of the four areas of SI as well

as directly, though to a far lesser extent, from the thalamo-cortical neurons. SII

projects to the insular cortex, which in turn innervates regions of the temporal

lobe that are believed to be important for tactile memory.

An interesting property of SI is that the topographical arrangement of the

receptive �elds on the skin is preserved (Mountcastle, 1957). SI, like the rest

of the cortex, is organized into vertical columns some 300 to 600 µm wide and

spreading over six layers of neurons from the cortical surface to the white matter

(Powell and Mountcastle, 1959; Mountcastle, 1997). Each cortical column of SI

is speci�c to one location (on the skin or in the body) and one sub-modality

(�g. 2.5 B). Neighboring columns in SI will process inputs from a�erents whose

receptive �eld centers are close, thus creating a somatotopic arrangement in SI

which is known as the homunculus (�g. 2.6). The somatotopic maps do not

match the spatial topography of the body but rather modulate the representation

of body regions depending on their innervation density. The result is that some

areas of the body (eg. the hands, feet and mouth) are extended whereas other

sections are compressed in comparison (eg. trunc and legs). For example, there

is approximately 100 times more cortical tissue devoted to an area of �nger skin

than to an equivalent same area of abdomen skin.

Each column also generally only receives inputs from one sub-modality (ie.
touch, pressure, pain and temperature). This follows quite naturally from the

sub-modality segregation already observed in the di�erent pathways and relays

(eg. DCN and VPL). Furthermore, even within a single sub-modality, inputs

may be further segregated. For example, mechanoreceptive signals in area 3b are

processed in slow adapting and fast adapting columns (Paul et al., 1972) which

receive information from respectively fast adapting and slow adapting receptors

(�g. 2.5 B and C).

Each of the four areas of SI receives inputs from the entire body and forms

its own somatotopic organization. However, areas tend to be heavily biased

towards one type of sub-modality. For example, area 3a is dominated by inputs

of proprioceptive signals on muscle stretch whereas area 3b focuses on

exteroceptive information from mechanoreceptive a�erents. In area 1, fast

adapting cutaneous receptors tend to dominate. Contrary to the three other

regions, the segregation in area 2 is less marked with inputs from both fast and

slow adapting a�erents as well as proprioception.
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Figure 2.5: Somatotopic and sub-modality organization of the primary somatosensory
cortex A. In each of the four regions of SI –areas 3a, 3b, 1, and 2– inputs from peripheral
receptors in specific parts of the body are organized in columns of neurons. B. Detailed
view of the columnar organization of inputs from hand digits in area 3b. Alternating
columns of neurons receive inputs from fast adapting (FA, also known as rapidly adapting
RA) and slow-adapting (SA) receptors in the glabrous skin. C. Overlapping receptive
fields from FA and SA receptors project to distinct columns of neurons in area 3b. (taken
from Kandel et al., 2000, adapted from Sur et al., 1984)
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Figure 2.6: Somatotopic arrangement of the SI. Each sensitive area of the body is mapped
onto the somatosensory cortex. More sensitive zones of the body (such as hands and lips)
are innervated with a higher density of mechanoreceptive afferents and have an extended
representation in SI.

Due to the convergence and divergence of the successive relay networks,

receptive �elds of cortical neurons are larger than those of dorsal root ganglion

neurons. However, their size varies signi�cantly depending on the area and layer

considered (Sur et al., 1985). Furthermore, receptive �eld sizes also depend on

the peripheral innervation density (or, equivalently, on the magni�cation in the

cortical map). Receptive �elds of the �ngertips remain fairly local (sometimes

covering up to a few �ngertips) whereas those from the forearm can cover the

entire ulnar surface. Noticeably, area 1 and 2 receptive �elds are considerably

larger and more complex than those of area 3b, re�ecting once more that these

two area have functionally di�erent roles. Indeed, area 2 has been shown to

contain neurons that act as feature detectors, similarly to neurons from the

primary visual cortex (Hubel and Wiesel, 1959). Notably, orientation and

direction speci�c neurons respond selectively to stimulus edges with respectively

a particular orientation and a particular movement direction (Hyvärinen and

Poranen, 1978; Costanzo and Gardner, 1980). A more recent study by Bensmaia

et al. (2008) has established that orientation selective cells can also be found in

areas 1 and 3b of SI. Though cells from both areas appear equally capable of

discriminating directions, area 1 was found to contain more such orientation

selective cells as well as a few direction selective ones. Once again, this
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illustrates the fact that areas 1 and 2 act as slightly higher level processing

stages, with more powerful feature extraction occurring, than areas 3a and 3b.

This is further con�rmed by ablation studies performed on animals which

showed that lesions of areas 1 and 2 only incurred milder shape and texture

(respectively) discrimination de�cits (Carlson, 1981), whereas animals without

areas 3b were unable to perform a wide range of tactile related tasks (Randolph

and Semmes, 1974; Semmes and Turner, 1977).

2.6 Conclusions

• Fine (ie. discriminative) touch is mediated by the dorsal column-medial
lemniscal pathway. This pathway is composed of three synaptic relays before

reaching the somatosensory cortex: primary afferents, the cuneate nucleus
and the ventral posterior lateral nucleus of the thalamus.

• Four types of primary a�erents (also referred to as mechanoreceptors)

innervate the glabrous skin of the �ngertip. They correspond to four

di�erent encapsulations of the a�erent endings, which in�uence their

functional properties. Contrary to type II, type I neurons have small well

de�ned receptive �elds and capture stimuli with the highest spatial acuity,

they outnumber by far type II a�erents in the �ngertip. Both types of

neurons can be either slow adapting (providing a tonic response to stimuli)

or fast adapting (having phasic response).

• The cuneate nucleus is characterized by a low functional connectivity with

the primary a�erents. Though its role is unclear, complex receptive �elds

as well as feedback signals from the cortex suggest that the cuneate nucleus

constitutes more than a simple synaptic relay for tactile information.

• Important feedback loops between the cortex and thalamus modulate the

transmission of tactile signals.

• Tactile information enters the somatosensory cortex through four di�erent

Broadmann's areas, each with a speci�c specialization.

• Signals from di�erent sub-modalities of the sense of touch remain segregated

until they reach cortical areas.





Chapter 3

Neural coding of tactile
information

Among the nervous system's many functions is that of integrating contextual

information from the organism and the environment �obtained through the

di�erent sensory systems� and use it to elaborate di�erent types of responses.

The study of neural coding aims at understanding under what form the

information is processed and transmitted through the nervous system, or, in the

words of Perkel and Bullock (1968), elucidating "the representation and

transformation of information in the nervous system". A complete

understanding of the neural coding principles would allow to both (i) predict the
neural responses to a given stimulus �ie. encoding� and (ii) know how the

system will read into a speci�c input signal �ie. decoding.

This chapter will brie�y present what is known about the neural coding

mechanisms and will focus on the two main coding schemes believed to be found

in the nervous system (ie. temporal coding and rate coding). The second section

of this chapter will present the coding of tactile information in the peripheral

somatosensory system. In particular, it will address how forms (ie. of the spatial
structure on surfaces) �perhaps the most important component for �ne touch

discrimination� are encoded through possible rate and temporal schemes.

3.1 Neural coding

3.1.1 Action potentials

The nature of the informative signal conveyed by neurons is an electrical

potential di�erence between the interior of the cell and its surrounding

extracellular environment (Dayan and Abbott, 2001). Under resting conditions,
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Figure 3.1: Action potentials recoded in the fly’s brain. Top: recorded voltage difference
between an extracellular electrode in a fly’s brain and a reference electrode placed in body
fluid. Middle: same voltage after applying a band-pass filter to remove low frequency
noise. The similar shape of action potentials is visible with an expanded time-scale on
the right overlay. Bottom: isolating voltages higher than a given threshold allows to
isolate the timings of action potentials. (taken from Rieke et al., 1999)

the potential inside the cell membrane of a neuron is approximately -70 mV,

with the potential of the surrounding environment conventionally set to 0 mV.

The di�erence between these two values is known as the membrane potential.

Membrane potential is regulated using ion channels which span all along the

membrane to adjust ionic concentrations of, predominantly, sodium (Na+),

potassium (K+), calcium (Ca2+) and chloride (Cl−) ions. Depending on the

relative concentration levels of these ions, the membrane potential can fall

further (hyperpolarization) or on the contrary increase (depolarization). If the

depolarization is signi�cant enough to raise the membrane potential beyond a

threshold value, a positive feedback process is initiated and an action potential �

also known as spike� is emitted (Adrian, 1926b,a; Adrian and Zotterman,

1926b,a). Spikes are characterized by a very high potential �uctuation (above

100 mV) over a very short temporal window (approximately 1 ms, see �g. 3.1,

center). After the spike, a hyperpolarization occurs making it harder or even

impossible for the neuron to emit another spike during a refractory period which

can potentially last up to tens of milliseconds.

Contrary to sub-threshold membrane potential �uctuations which are greatly
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attenuated over distances of 1 mm, action potentials are continuously

regenerated and are supposedly the only form of membrane potential �uctuation

which can travel rapidly over large distances without attenuation (Dayan and

Abbott, 2001). At the junction between two neurons, known as a synapse,

potential �uctuations due to action potentials indirectly lead to the release of

neurotransmitters which either stimulate or inhibit the subsequent neuron.

From these observed properties, it is assumed that information in the nervous

system is essentially conveyed through the medium of action potentials.

As the amplitude, duration and shape of spikes can vary a little (Dayan and

Abbott, 2001), the information is contained in the presence and timing of spikes

and spike are often represented in a stereotypical manner (see �g. 3.1, bottom).

As such, the neural code is all-or-none, somewhat akin to the binary code used in

computers, albeit one without central clock. In the rest of this study, spikes will

be solely characterized through their timing.

3.1.2 Spike train description

Given the very short duration of spikes compared to that of the entire response

and the stereotyped nature associated with them, action potentials are usually

represented using Dirac functions (Dirac, 1958):

s(t) =
∑
i

δ(t− ti) (3.1)

where {ti} is the set of spike times and δ is the Dirac function which is null

everywhere except in the origin, where it is in�nite (such that its integral is equal

to one). The spike count over a window of time T can then be obtained by

integrating the spike train:

N =
∫ T

0
s(τ)dτ (3.2)

Strictly speaking, the �ring rate function is de�ned as:

r(t) = 1
∆t

∫ t+∆t

t
s(τ)dτ (3.3)

As ∆t approaches zero, the �ring rate converges towards the original spike train

s(t). When dealing with multiple trials, the spike train s can be replaced by its

average over the trials 〈s〉 and ∆t should be large enough to contain multiple

spikes in order to accurately estimate the �ring rate function.
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Di�erent methods are used to approximate the �ring rate, all of them

containing a set of arbitrary parameters. The simplest method is to discretize

the timescale into di�erent bins and count the number of spikes within each bin.

When adding its results over multiple trials, this method leads to the creation of

a peristimulus time histogram (PSTH, also known as poststimulus time

histogram). The drawback of this method is that it involves choosing a bin size

and placement, which can greatly in�uence the shape of the estimated �ring rate

curve. To avoid having to arbitrarily place the bins, another method uses a

sliding time window to estimate the �ring rate. This method uses the same spike

multiple times in order to compute the �ring rate at di�erent time points which

creates a correlation between �ring rates at close times. Both of these methods

generate �ring rate curves which are piece-wise continuous. For a continuous

function, a convolution between the spike train and a kernel (eg. Gaussian) is

used. In all cases, the temporal resolution has to be chosen arbitrarily depending

on the type of coding considered. For a very high temporal resolution, the

spatio-temporal structure of the spike train is maintained in what is known as

temporal coding (Theunissen and Miller, 1995). Conversely, for lower resolutions,

the structure of the spike train is mostly lost and the rate code is studied.

3.1.3 Spike rate coding

Along with observing the action potentials, E. D. Adrian found that the

discharge rate of these spikes was positively correlated with the amplitude of the

stimulation (Adrian and Zotterman, 1926b). This has led to an approach of

neural coding focused around �ring rates in which the number of spikes emitted

holds most of the relevant information about the stimulus (notably about its

amplitude). Studying the rate code has proven useful in a number of tasks such

as (but not restricted to) vision (Dean, 1981), navigation (Burgess and O'Keefe,

1996), motor control (Georgopoulos et al., 1988) and decision making (Sallet

et al., 2007).

The assumption behind the concept of rate coding have often led to model

neural activity using a Poisson process. A Poisson process is a Markovian point

process where the occurrence of a spike event is independent from the timing of

the last event. In this context, the probability of observing a number k of spikes
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in a temporal window of size ∆t follows a Poisson distribution:

p∆t(k) = e−r∆t
(r∆t)k

k! (3.4)

where r is the �ring rate in the temporal window considered. Two distinguishing

properties of a Poisson process is that the Fano factor (F ) and the coefficient of
variation (CV ) are equal to 1.

F = σ2
n

〈n〉
(3.5)

CV = στ
〈τ〉

(3.6)

where σ2
n is the variance in spike count, 〈n〉 the mean spike count, στ and 〈τ〉

respectively the standard deviation and the mean interspike interval (ISIs). High

values of Fano factor and coe�cient of variation re�ect a very high variability not

only in the temporal structure of spike trains but also in the number of spikes.

Consequently, this model suggests that it is necessary to record multiple trials

and/or over a long time period in order to accurately estimate the rate signal

which is being conveyed. Figure 3.2 provides an illustration of this drawback

by showing an estimation of the �ring rates for di�erent numbers of trials. It

can be observed that for few trials, the estimation is very poor and only for a

high number of trials (above 100 in this case) is the �ring rate signal adequately

reproduced.

This suggests a quite ine�cient nervous system, with a high level of

redundancy required. Nonetheless, the Poisson process model is supported by

some experimental evidence as coe�cient of variation values nearing 1 have

indeed been observed in cortical neuronal activity (Softky and Koch, 1993).

Furthermore, spike counts have been shown to be highly variable, with Fano

factors around 1.5 in the visual cortex for example (Tolhurst et al., 1983;

Snowden et al., 1992). This slightly higher Fano factor is sometimes explained

through the presence of observed bursting activity and it is possible to adapt the

Poisson process model to reproduce this behavior (for example by simply

replacing the spike event by a burst event).

Further improvements have been brought to the Poisson process model in order

to take into account the ISI. Indeed, after a spike is emitted, the refractory period

prevents another spike to be generated for a few milliseconds, e�ectively limiting

the range of possible ISIs. This is never taken into account in the Poisson process
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Figure 3.2: Illustration of the Poisson process for generating spike trains following specific
firing rates. A. Firing rate evolution over time of the desired spike trains. B. Raster plot
of 40 spike trains generated using a Poisson process for the firing rate curve describe
above. Note the high variability in the spike trains. C. and D. PSTH –computed over 10
and 200 trials respectively– used to estimate the firing rate of the spike trains in the raster
plot. Comparing the two plots shows that individual spike trains are poorly informative
regarding the firing rate and an important number of trials is therefore necessary to build
a correct estimation.

model in which spikes are independent from one another. The renewal process
corrects this by taking into account the ISI distribution, and is akin to a Poisson

process which generates ISIs instead of spikes. Experimental recordings have

shown that ISI distributions can be roughly �tted by gamma functions (Bair et al.,

1994) and the renewal process can therefore be de�ned through the probability

of having a spike at time t, knowing that the last spike occurred at time t̃:

p( t | t̃ ) = γ(t− t̃)αe−λ(t−t̃) (3.7)

with α, γ and λ parameters de�ning the ISI distribution.
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Rate coding limitations

The concept of rate coding has a number of drawbacks which lead many to

question its true role in the neural code. They notably include:

Encoding capacity. By its own mathematical de�nition, rate coding considerably

reduces the number of dimensions in the signal space and with it the quantity

of potential information being encoded (MacKay and McCulloch, 1952). This is

illustrated by the fact that although di�erent spatio-temporal structures of spike

trains may have the same rate code, spike trains with di�erent rates will never

have the same spike timings. By itself, this observation does not prove that the

capacity of a rate code is not su�cient to carry the necessary information, but it

does suggest that if it were so, the nervous system would be quite sub-optimal.

Energy cost. As was pointed out by Lennie (2003), the cost of generating a spike

is high. In this context, having to generate many spikes to provide a precise

estimate of the �ring rate �especially for high �ring rates� appears ine�cient

energy-wise.

Signal modulation. Firing rates are modulated at a very high speed, sometimes

sorter than the average ISI. Such brief modulations are in e�ect impossible for

the neural system using single spike trains. Their detection would require a high

level of redundancy which is not always available at the peripheral level.

Signal estimation. In the cases where only a few (one or two) spikes are received,

the rate cannot be reliably estimated. For example, Gautrais and Thorpe (1998)

computed that for a Poisson process input whose observed rate was 100 Hz after

10 ms (so 1 spike in the 10 ms window), all that one could say was that there was

a 90% chance that the actual frequency was comprised between 5 and 474 Hz. To

reduce the estimation error, one has to observe the activity on multiple neurons

and/or during a longer temporal window.

Noise origin. Rate coding suggests neurons are highly variable or noisy in their

spike timings. This raises the question of the origin of such noise. To this day,

the main biophysical model of neuron is the Hodgkin-Huxley model (Hodgkin

and Huxley, 1952) which is entirely deterministic. Some explanatory models have

been proposed though they often remain disputed (eg. Shadlen and Newsome,

1994; Mainen and Sejnowski, 1995; and Softky, 1995).
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3.1.4 Spike time coding

Another approach to extracting information from the neural code supposes

that individual spike times are relevant to the signal. This stems from the

observation that the theoretical capacity of neurons to transmit information is

much higher when taking into account the timing of spikes (or of ISIs) as

compared to spike counts only (MacKay and McCulloch, 1952; Gautrais and

Thorpe, 1998). Furthermore, it is supported by experimental evidence which has

shown that (i) spike times can in some cases be very reliable (Johansson and

Birznieks, 2004), and that (ii) spike train processing can be surprisingly fast

(Thorpe et al., 1996).

Spike time precision

Although a high level of irregularity has been observed in cortical neuronal

activity (as discussed in section 3.1.3), robust spike timings have also been found

in neural systems. In particular, sensory systems seem to share a common high

temporal precision at least at the peripheral level. Indeed, the temporal

precision of spikes has been observed in the case of the auditory (Joris et al.,

2004; Furukawa et al., 2000), olfactory (Haddad et al., 2013), visual (Berry

et al., 1997), somatosensory ��ngertip (Johansson and Birznieks, 2004) as well

as whisker (Arabzadeh et al., 2005)�, and electrosensory (Carr et al., 1986)

systems.

Attempts to conciliate the high temporal precision sometimes observed with

the apparent variability recorded in some systems has led to the view that

peripheral systems might be based essentially on spike time codes whereas

central systems (in which admittedly more redundancy and longer processing

time-windows are available) would rely on rate codes. Consistently with this

view, it has been noted that the temporal precision of spikes often seems to

decrease as the signal propagates to new areas (Joris et al., 2004), and that some

conversion mechanism in the code must therefore occur (Haddad et al., 2013).

However, it is possible that these observations might be the result of a

skewed analysis as the presence of rate coding is not necessarily incompatible

with an informative spatio-temporal organization of spikes. Indeed, temporal

coding has been found relevant in areas (such as the central nervous system)

that were previously believed to rely on rate coding mechanisms. For example,
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Bair and Koch (1996) found that the response of neurons from the middle

temporal (MT) cortex to certain highly dynamic motion stimuli showed a

reproducible temporal modulation precise up to a few milliseconds (ranging

from 2 to 10 ms). Similarly, Reich et al. (2001) observed that spike times (and

notably �rst spike latencies) in the visual cortex (V1) conveyed information for

distinguishing subtle contrast levels. Similar �ndings have been made in the

somatosensory system where a 5 ms temporal precision has been found for

spikes (Petersen et al., 2002). The precision of spike timings in cortical neurons

has been found to depend on the stimulus transients: constant stimuli induced

poor temporal precision, whereas rapid �uctuations produced highly

reproducible spike timings (Mainen and Sejnowski, 1995).

Processing speed

Proponents of spike time coding also point towards the very high speed at

which sensory information can be processed as further evidence for the importance

of spatio-temporal structure of spike trains. Studying the response of primate

brains to visual stimuli, Thorpe and Imbert (1989) found that selective neurons

reacted as early as 100�150 ms after the stimulus onset. Before reaching these

neurons, the informative signal had to cross approximately 10 layers of neurons

spread across the cortex. This implied that on average, each of these processing

stages had 10 ms to carry out its task. Given that cortical �ring rates rarely

rise above 100 Hz, and the distances over which the signal travels, it has been

argued that processing of the signal is accomplished while only 0 or 1 spikes (or

an extreme of 2 spikes in some rare conditions) have been received. Furthermore,

this estimation is carried out while neglecting the possible role of recurrence in

the processing networks. Another study has demonstrated that unknown visual

scenes can be categorized by humans in only 150 ms (Thorpe et al., 1996).

Along the same line, it has been shown that in the somatosensory system only

a few spikes (perhaps as few as one spike) from a single mechanoreceptive a�erent

were sometimes necessary to generate a percept (Vallbo, 1995). And important

temporal constraints have also been observed in a number of other sensory systems

(Carr, 1993).
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Decoding a temporal code

Studying the information contained in the spatio-temporal pattern of spikes is

only part of the problem, as it is important to know whether or not neurons have

the means to extract this information (let alone if they actually do so). Indeed,

information has often been found in the timing of �rst spikes (eg. Johansson and

Birznieks, 2004; Gawne et al., 1996; Heil, 2004; Panzeri et al., 2001). However,

it is di�cult to imagine how the biological organism would have access to the

absolute timing of �rst spikes; or even how �rst spikes are de�ned or recognized

in the context of a dynamically evolving stimulation.

A number of models have been put forward to explain how such temporal

information could be extracted. Yet, all of these are linked in that they seem to

rely on the creation of a relative scale to evaluate the spike times.

Relative first spike times. In order to bypass the impossibility to extract the

absolute timing of spikes, a relative time scale is created by considering the

population activity onset as origin. Using this technique, Gollisch and Meister

(2008) managed to recreate, with surprising quality, the stimulus images from

the recorded activity of ganglion cells of an isolated salamander retina.

Furthermore, while it might be expected that using relative times yields less

information than for their absolute counterparts, a study on sound localization

performed by Chase and Young (2007) on decerebrated cats showed that relative

latencies could actually increased the average amount of information contained

in single neuron responses.

Phase coding. Combining the state (and more precisely the phase) of the local

�eld potential oscillations and the timing of spikes has been shown to be highly

informative during the analysis of cortical neuron responses to visual and

auditory stimuli (Kayser et al., 2009). In this coding scheme, local �eld

potential oscillations act as a reference point to understand the spike times.

Coincidence detector. Perhaps the simplest decoding scheme: the coincidence

detector considers the spike times relative to each other (Hop�eld, 1995; König

et al., 1996). If two spikes elicit post-synaptic potentials that are temporally close,

their e�ects can be combined to either elicit a spike or inhibit the creation of one,

in e�ect modulating the output activity of the post-synaptic neuron. In its most

common form, coincidence detector neurons only �re when receiving synchronous

inputs.
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Rank order coding. Another mechanism found for decoding �rst spike latencies

is the Rank Order coding scheme (Thorpe and Gautrais, 1998). Contrary to the

other mechanisms listed above, the rank order system does not rely on the precise

timing of spikes but rather on their relative order of arrival. It uses synaptic

weights and an inhibitory network (Thorpe et al., 2001) so that only a speci�c

order of incoming spikes generates an outgoing activity.

3.2 Fine touch information coding

The relative contribution of kinesthetic and cutaneous sensation in the

identi�cation of surfaces with textures and embossed shapes is still an open

question. In the case of �ne textures, remote mechanoreceptors are capable of

encoding surface roughness suggesting that subcutaneous mechanoreceptors,

responsible for kinesthetic sensation, can contribute to the recognition of these

textures (Libouton et al., 2012). However, during tactual pattern recognition, no

statistically signi�cant di�erence was found between active and passive touch

(Vega-Bermudez et al., 1991); it can therefore be assumed that kinesthetic

information plays a minor role compared to �ne touch in the characterization of

coarser textures. Fine touch, also known as discriminative touch, is a sensory

modality which allows the subject to precisely locate the stimulation source. It

carries the necessary information about di�erent features of a stimulus in order

to locate, characterize and possibly identify it.

Perceptually, textures can almost entirely be de�ned using two independent

dimensions: rough-smooth and hard-soft (Johnson and Hsiao, 1992; Hollins et al.,

1993). Perceived roughness has been found to be associated with the spatial

modulation of the surface (Connor and Johnson, 1992), although it has been

argued that for very �ne textures it can also be perceived thanks to a vibrational

component (Hollins and Risner, 2000). This section will focus on the coding

mechanisms underlying form perception of coarse textures or embossed shapes in

the peripheral somatosensory system.

The study of coding mechanisms of tactile information has historically

concentrated on the �ring rates induced by cutaneous stimulation. More

recently, studies have increasingly considered the temporal coding aspects of

these responses and it has been proved that spike times carry a high amount of

information for discriminating between di�erent stimuli (Johansson and
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Birznieks, 2004). Although some of the information can be found through both

of these coding mechanisms, it has been argued that they rather complement

each other and carry information on di�erent features of the stimulus (Harvey

et al., 2013; Saal et al., 2009).

3.2.1 Primary afferent coding of spatial structures

Mechanoreceptor type comparison

Form perception at the �nger pads consists in the comprehension of the spatial

features of an object or surface through direct contact with the skin. Humans have

shown an impressive capability of processing and discriminating spatial features

of surfaces, as is illustrated by adult's capability to read grade 2 (contracted)

Braille at mean rates of 70-90 words per minute and sometimes even at much

higher rates (Nolan and Kederis, 1969). This performance implies that a detailed

representation of form must exist at all levels of processing, leading to recognition

and perception (Johnson and Hsiao, 1992).

Studying the responses of primary a�erents to Braille patterns scanned at 60

mm/s provides an illustration of their spatial acuity (�g. 3.3). Results are

showed as spatial event plots, which consist in displaying the recorded spikes

onto the stimulus pattern in order to obtain a spatial representation of the

outgoing activity. The small and well de�ned receptive �elds of slow adapting

(SAI) and fast adapting (FAI) type I a�erents (see section 2) lead to a neural

representation of stimuli that has roughly the same spatial structure as that of

the stimuli. This coding property is sometimes referred to as an isomorphic

representation of the stimuli. Responses of individual primary a�erents remain

relatively homogeneous within the same class, though varying greatly from on

class to another. Slow adapting (SAII) and fast adapting (FAII) type II

a�erents are apparently incapable of resolving spatial details (�g. 3.3) and are

likely not involved in coding for form perception. Somewhat coherently, their

innervation density is considerably lower that that of type I a�erents (see

section 2). This is a widely accepted conclusion, which rests on the assumption

that the spatial structure is encoded under some form of rate modulation.

The relative contributions of SAI and FAI to encoding the spatial structure of

a stimulus have been compared in the context of static touch and dynamic touch
(for a review see Johnson and Hsiao, 1992).
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Figure 3.3: Spatial event plots of primary afferent responses to Braille stimuli. The
top panel shows the patterns of embossed dots, 0.43 mm high, composing the Braille
characters A through R, which were scanned across the receptive fields at 60 mm/sec.
Between each scan characters were shifted by 0.2 mm normal to the scanning direction.
Each panel shows the responses of a single afferent fiber. The scanning direction was
proximal to distal across the skin and the application force 60 g. (adapted from Phillips
et al., 1990)

Static touch. In the static touch protocol, mechanical probes do not vary (in

intensity or in application position) as the stimulation progresses.

Psychophysical studies on the discrimination of orientated gratings, Braille dots

and embossed letters (Phillips and Johnson, 1981a; Loomis, 1981;

Vega-Bermudez et al., 1991) have shown that humans can perform slightly

above chance discrimination of elements separated by 0.5 mm gaps.

Performance increased considerably as gaps grew wider and was maximal for

gaps larger than 0.9 mm. These results only concern SAI a�erents which are

able to resolve the spatial structure of all gratings that produced better than

chance discrimination behavior. In contrast, FAI a�erents begin to resolve the

same structures at 1.5 mm gaps. This suggests that in static touch, SAI

a�erents account for the limits of spatial acuity.

Dynamic touch. During dynamic touch, the �ngertip is moved across the

surface while the stimulation occurs. Acuity improvements relative to static

touch of 10 to 20% have been observed while scanning Braille and embossed
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letters (Loomis, 1985; Phillips et al., 1983). This is believed to be linked to the

considerable increase in �ring rate (more than 10 times higher than in static

conditions) observed in SAI a�erents, which nonetheless did not show signs of a

loss of spatial resolution (Johnson and Lamb, 1981). Similarly to static touch,

only SAI mechanoreceptors can account for the observed limits in spatial acuity.

Meanwhile, stimulations using an Optacon, which consists of an array of pins

vibrating at 230 Hz, have elicited next to no activity from SAI but excited both

FAI and FAII �bers (Gardner and Palmer, 1990). This suggests that FAI may be

more responsive than SAI a�erents, and despite having a lower spatial resolution,

might play a role for detecting small indentations and higher spatial frequency

textures. Indeed, the scanning of a textured surface elicits vibrations in the skin,

at a frequency determined by the movement velocity and the dimensions of the

patterns on the surface (Bensmaia and Hollins, 2003). These vibrations could

then be detected and encoded by FAI and FAII a�erents.

Although some points are still debated, it is commonly accepted that there is

a functional division between the four cutaneous receptive a�erents (Johansson

and Flanagan, 2009). The SAI system provides a high-quality neural image of

the spatial structure of objects and surfaces that is the basis of form and texture

perception. The FAI system encodes motion signals of objects contacting the skin

which are critical for grip control, as well as higher frequency vibrations. FAII

and SAII are not relevant for the perception of form, however, they respectively

encode very high frequency vibrations and skin stretch from the entire hand.

Coding of spatial features

It has been argued that SAI and, to a lesser extent, FAI a�erents encode

isomorphic representations of patterns through the spatial modulation of �ring

rates (Johnson, 2001). This means that variations in the �ring rate matched

changes in the surface's shape. Considering this coding scheme, SAI a�erents

were found to respond to stimulus features such as edges or curvature rather than

to the indentation. This behavior might explain the asymmetrical results in the

classi�cation task carried out by Vega-Bermudez et al. (1991). In this experiment,

some scanned embossed characters were mis-recognized as characters with similar

contours. For example, in this test, the letter `B' was often confused with `D', but

interestingly `D' was rarely classi�ed as `B'. The fact that the internal horizontal

bar of `B' is poorly represented in SAI activity explains why the classi�cation of
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the two characters was asymmetrical.

The spatial modulation displayed by SAI a�erents depends on the spatial

period of the stimulus gratings. As illustrated in �gure 3.4, low spatial periods

elicited little to no modulation in the response. Conversely, spatial modulation

of activity increases monotonically with the spatial period (Phillips and

Johnson, 1981a). This is believed to result from the mechanics of the skin which

make it act as a low pass �lter (Phillips and Johnson, 1981b). This coding

scheme has been found to be robust to scanning speeds up to 80 mm/s, contact

forces up to 1 N and to the type of scanning (passive or active) (DiCarlo and

Johnson, 1999; Johnson and Hsiao, 1992; Hsiao and Yau, 2008). As well, by

recording SAI and FAI responses to a vibrating grating, Bensmaia et al. (2006)

have shown that the spatial modulation of SAI activity is largely insensitive to

both the vibrating frequency and amplitude, while FAI activity is only

insensitive to the former.

SAI coding properties

The spatial modulation of SAI �ring rate encodes the spatial structure of a

surface, and can account for the perception of roughness in coarse textures. The

SAI system is also known for responding linearly (from a �ring rate perspective)

to skin deformations. This notably includes skin indentations of at least 1,5 mm

(Blake et al., 1997; Johnson et al., 2000) and object curvature (Goodwin and

Wheat, 1999; Bisley et al., 2000). However, SAI activity shows a much greater

sensitivity to curvature and surface features than to indentation levels in itself.

This is the consequence of both the mechanical properties of the skin and the

positioning of the Merkel cells encapsulating the a�erent endings. These make

SAI receptive �elds properties resemble those of center-surround receptive �elds

from the central nervous system (Vega-Bermudez and Johnson, 1999). For the

same reason, SAI receptive �elds and spatial acuity do not increase and

decrease, respectively, considerably higher levels of indentation (Vega-Bermudez

and Johnson, 1999).

It has been noted that the SAI responses to repeated skin indentation are

remarkably invariant (Werner and Mountcastle, 1965; Wheat et al., 1995;

Vega-Bermudez and Johnson, 1999). In fact, Vega-Bermudez and Johnson

(1999) showed that in their experiments, regardless of the number of spikes

emitted, the variability was of about one impulse per trial, which could not be
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Figure 3.4: SAI, FAI and FAII responses to an aperiodic grating indenting the skin. The
grating is shown in cross-section beneath each response profile. Gaps between bars are
0.5, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0 and 5.0 mm wide. The grating indented the skin by 1 mm
for 1 s, was raised and moved laterally 0.2 mm for the next indentation. The ordinate
represents the number of action potentials evoked during each 1 s period. FAI and FAII
afferents responded during the indentation phase only, which accounts for their smaller
impulse counts. Testing progressed from right to left; the progressive decline in PC
responses results from adaptation to the repeated indentations. (taken from Johnson,
2001)

accounted for by a renewal process (see section 3.1.3). While this leads to a

robust rate coding mechanism, it also suggests that tactile information is

encoded through more than a simple rate code (even one that is spatially

modulated) and that temporal coding has to be explored as well.
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3.2.2 Temporal coding of tactile information

In a recent microneurography study, Johansson and Birznieks (2004) have

suggested that the timing of impulses from ensembles of human

mechanoreceptor a�erents can convey information about important contact

parameters. The transfer of this information would occur faster than the fastest

possible rate code, and possibly fast enough to account for the use of tactile

signals in natural manipulation. In the context of this experiment, the timing of

�rst spikes reliably conveyed information about the probe shape, as well as its

application direction and force. Intuitively, this is explained by the fact that

changes in contact parameters in�uence di�erently individual a�erents in a

population, which is re�ected in di�erent �rst-spike latencies. Variations in �rst

spike latencies can be greater than 15 ms, which is signi�cant compared to the 1

ms jitter observed when repeating the same indentation (Johansson and

Birznieks, 2004). The high temporal reliability of mechanoreceptor responses

(Edin et al., 1995; Vega-Bermudez and Johnson, 1999; Johansson and Birznieks,

2004) allows for an e�ective temporal coding mechanism.

Estimates of how early responses from a population of a�erents contain enough

information for the discrimination of contact parameters indicate that an FAI

population is more e�cient (ie. faster) than the SAI population in encoding

these features (Johansson and Birznieks, 2004; Brasselet et al., 2011b). At the

level of individual a�erents, Saal et al. (2009) found that spike timings contained

more information about the force direction (1.6 times more) and curvature (2.2

times more) of the probe than a rate code. Furthermore, the coding of surface

curvature and force direction by means of spike timing and spike counts provided

overall complementary information. The information content of SAI and FAI

responses were broadly similar (with a slightly better result for SAI a�erents),

which was explained, according to the authors, by the chosen stimulation time

course (frequency of approximately 4 Hz). This frequency constitutes the edge of

both FAI and SAI sensitive bands.

3.2.3 Cuneate nucleus processing

Sensory information from the �ngertips is relayed through the feed-forward

cuneate network. The cuneate nucleus is often assumed to play only a minor role

in the processing of tactile information along the somatosensory system. This
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view is reinforced by observations of cortical neurons from S1 typically displaying

the same coding scheme (ie. spatial modulation of the �ring rate) as primary

a�erents (see �g. 3.5). Similarly to peripheral a�erents, slow adapting cuneate

neuron �ring rates were found to increase with the indentation level and displayed

very little variability (Douglas et al., 1978). Evidence of phase locking mechanisms

has been found in the case of stimulation vibration frequencies of 10 to 50 Hz

(Douglas et al., 1978), though it is uncertain how this plays a role in encoding

coarser textures.

A recent computational study has suggested that the connectivity layout of

the cuneate nucleus could help enhance the discriminability between

spatio-temporal signals by providing an optimal context separation (Brasselet

et al., 2009). Similarly, and supposing the existence of a temporal coding

mechanisms at the peripheral level, Johansson and Flanagan (2009) have

hypothesized that the cuneate network might act as a coincidence detector.

Meanwhile, Navarro et al. (2007) developed a model of the cuneate nucleus

which generated a new spatio-temporal code for transmitting information to the

thalamus in a progressive way, starting with regions with higher contrast and

�nishing at those with lower contrast.

Cuneate neurons have been found to have complex �ring patterns (Pubols

et al., 1989; Canedo et al., 1998) with both tonic and bursting phases. In

anesthetized animals (ie. cats and raccoons), some cuneate neurons, though not

all, spontaneously emitted spikes in the absence of stimuli (Sanchez et al., 2006;

Canedo et al., 1998; Pubols et al., 1989). This has led to the hypothesis, still to

be veri�ed, that some form of phase coding of tactile information could occur at

the cuneate level.

Though new insights in the temporal coding in cuneate responses will probably

be found, the current state of the art suggests that, similarly to primary a�erents,

surface structures are encoded in the spatial modulation of the �ring rate. The

isomorphic representation of spatial structures is maintained up to the cortical

level (see �g. 3.5) where more important feature extraction occurs. Evidence

of temporal coding have been found in the somatosensory cortex, notably in the

rat barrel cortex (Petersen et al., 2002; O'Connor et al., 2013); however cortical

�ring rates have proved su�cient for performing discrimination tasks (O'Doherty

et al., 2011; O'Connor et al., 2013) and feature extraction (Hsiao et al., 2002). In

monkey somatosensory cortex S1, these two coding schemes have been found to

account for di�erent features of the stimulus (Harvey et al., 2013).
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Figure 3.5: Spatial event plots reconstructed from single SA and FA neurons at the
periphery and in areas 3b and 1 of S1 in an awake monkey. Letter height was 8.5 mm
and the scanning velocity 50 mm/sec; contact force, 60 g. In area 3b, SA neurons best
reproduced the isomorphic mapping observed at the periphery. This representation was
noticeably degraded in area 1 of S1, suggesting that a change in the coding scheme,
through feature extraction, occurs at that level. (adapted from Phillips et al., 1988a)
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3.3 Conclusions

• Neural codes can be broadly distinguished into temporal codes and rate

codes, depending on whether attention is paid to the precise timing of spikes,

or to the number of spikes �red during an appropriately chosen temporal

window.

• In the peripheral somatosensory system, SAI a�erents have been found to

best account for the encoding of stimuli spatial structures on a surface. This

information is eventually complemented by FAI signals in the case of higher

frequency stimulations and lower indentation levels.

• The encoding of form by SAI a�erents most likely occurs under the form of

a spatial modulation of the activity �ring rate.

• The encoding mechanisms operated by the cuneate nucleus remain largely

unknown. The coding scheme is likely to be similar to that of the primary

a�erent level.

• Evidence supporting the presence temporal coding mechanisms at the

primary a�erent and (to a lesser extent) cuneate level has been found.

• Both rate coding and temporal coding schemes have been observed in the

somatosensory cortex, though �ring rate codes remains the preferred

approach to study cortical processing.



Chapter 4

Information analysis performed
on primary afferent responses

Using human microneurography recordings, Johansson and Birznieks (2004)

have shown that the timing of impulses from ensembles of mechanoreceptor

a�erents can convey information about important contact parameters. Brasselet

et al. (2011b) uses metrical information theory to quantify the information

content of spike train responses while accounting for di�erent encoding schemes.

The same method will be used for validating the results of the work presented in

this manuscript and is employed in the current chapter to provide an illustrative

analysis of primary a�erent responses. This analysis constitutes a partial

reproduction of the work of Brasselet et al. (2011b), as well as its extension to a

population of SAI a�erents.

4.1 Metrical information theory

Information theory is a powerful mathematical tool which is capable of

quantifying how well it is theoretically possible to discriminate an input signal

database, knowing only the corresponding output signals �ie. how much

information about the input signals the output signals contain. This theoretical

tool was �rst developed by Shannon (1948) in the context of a communication

system as illustrated in �gure 4.1. Since then it has been applied to many �elds

containing all sorts of signal communications and encoding-decoding schemes.

This is notably the case in the �eld of neuroscience where it has been argued

that the reliability of neural coding mechanisms can be analyzed in terms of

information content (MacKay and McCulloch, 1952; Bialek et al., 1991; Rieke

et al., 1999).

Shannon's information theory yields a considerable advantage over other
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Figure 4.1: Basic scheme of a communication system. In the context of this study, both
first and second order neural networks as well as the artificial skin can act as the channel.
The information source is the Braille stimuli and the destination the discrimination
results.

techniques in that it relies on a non-parametric probabilistic approach that

makes no particular assumptions on the system and the signals being

considered. As such, it distinguishes itself from classi�ers and decoders which all

make various assumptions on the signals being read in order to extract their

informative content (Quiroga and Panzeri, 2009). However, contrary to

classi�ers, information theory only provides the amount of information available,

not an actual scheme for extracting that information.

Information theory has grown to encompass di�erent measures of information.

The traditional measure is known as �Shannon Mutual Information� (Shannon,

1948). It provides an upper bound on the performance that can be expected

from a classi�er. Mathematically, mutual information is de�ned by the following

equations:

I(R;S) = H(R)−H(R|S) (4.1)

where

H(R) = −
∑
r

p(r) log2 (p(r)) (4.2)

H(R|S) =
∑
s

p(s)H(R|s) = −
∑
s,r

p(r, s) log2 (p(r|s)) (4.3)

where I(R;S) is the mutual information; H(R) and H(R|S) are the marginal

and conditional entropies, respectively; R and S denote respectively the
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response and the stimulus space; p(r), with r ∈ R, is the response marginal

probability; p(s), with s ∈ S, the stimulus a priori probability; p(r|s) and p(r, s)
the conditional and joint probabilities, respectively. Entropy values quantify

how large the space of signals is, for instance a high H(R) indicates that there

are many possible response signals that could potentially be received. H(R|S)
re�ects how much uncertainty on the response signals remains when the

stimulus is known. Mutual information is therefore de�ned as the reduction of

uncertainty brought by linking the responses to the stimuli through the

communication or processing mechanisms.

When considering spike train signals, however, two responses are never exactly

identical. Because mutual information is non-parametric, in this framework spike

trains will always be considered unique �and consequently all equally probable�

even when very similar. This has the consequence of leading to very high values of

conditional and marginal entropies. The mutual information value remains correct

as both entropy values react in the same way. However, entropy values may no

longer re�ect the variability in the signals such as the biological system sees them.

This, taken by itself might lead to overestimating the decoding capacity of the

nervous system. Considering signals to be simply identical or di�erent also ignores

the fact that some signals are more easily discriminated than others. While this is

not necessarily a concern when conducting a pure information theoretical analysis,

it might become a relevant problem when the aim is, for example, the study of a

biological network.

To correct this, the metrical information theory was derived (Brasselet et al.,

2011b). Unlike Shannon mutual information, this measure takes into account

the metrical properties of the spike train space (Victor and Purpura, 1996;

Schreiber et al., 2003; van Rossum, 2001) to assess how similar two responses

are. Mathematically, metrical information I∗(R;S) is de�ned by:

I∗(R;S) = H∗(R)−H∗(R|S) (4.4)
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where

H∗(R) = −
∑
r

p(r) log2

∑
r′

p(r′)φ(r, r′)

 (4.5)

H∗(R|S) =
∑
s

p(s)H(R|s) = −
∑
s,r

p(r, s) log2

∑
r′

p(r′|s)φ(r, r′)

 (4.6)

φ(r, r′) = H

(
Dc −D(r, r′)

)
(4.7)

The mathematical symbols used are the same as for Shannon mutual

information (see equation 6.9). The function φ(r, r′) measures the similarity

between two responses, and it is de�ned as the Heaviside function of the spike

train metric D(r, r′) between two spike trains r, r′ ∈ R (see section 4.2 for

details on possible spike train metrics). For D(r, r′) < Dc, responses r, r′ are

considered as identical (i.e. φ(r, r′) = 1), otherwise they are considered as

di�erent. If Dc = 0, then the metrical version of entropies are identical their

Shannon counterparts.

The critical distance Dc was established by comparing the distances between

responses elicited by the same stimulus (known as intrastimulus distances) and

responses elicited by di�erent stimuli (named interstimulus distances). As

explained by Brasselet et al. (2011b), Dc was set to the value at which the

maximum intrastimulus distance �ie. the size of the largest cluster of responses

from one class� becomes smaller than the minimum interstimulus distance �the

smallest distance between clusters of responses from one class. In the case of

neurotransmission, the relationship between intra- and interstimulus distance

distributions tends to evolve over time as new spike waves arrive. While this

process occurs, the distributions of intra- and interstimulus distances grow apart

and eventually stop overlapping. At this point, the value of Dc can be

determined, and the optimality condition is reached. The optimality condition

corresponds to a maximal I∗(R;S) along with a null (or minimal) H∗(R|S).
Conceptually, this means that not only do the output signals contain as much

information as they can possibly have, but that there is a space in which the

responses are unambiguously clustered �ie. the decoding of the output signals is

very simple.

Figure 4.2 provides an example of the application of metrical information
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theory to microneurography recordings performed on humans (Johansson and

Birznieks, 2004). Shannon information is shown to accumulate faster, reaching

its maximum approximately 13 ms before the metrical information does.

However, contrary to metrical entropy, Shannon conditional entropy only

stabilizes around 6.7 bits (not shown on the �gure), suggesting that the

optimality condition will never be reached.

4.2 Spike train metrics

Many di�erent metrics have been proposed for quantitatively comparing spike

trains (van Rossum, 2001; Quian Quiroga et al., 2002; Schreiber et al., 2003; Kreuz

et al., 2007; Houghton and Sen, 2008; Wu and Srivastava, 2011). In this study,

two di�erent metrics were considered: the Victor-Purpura Spike distance, and its

derivation: the the Victor-Purpura Interval distance. These two Victor-Purpura

distances allowed to choose the temporal resolution with which spike times were

compared, by the tuning of a cost parameter.

4.2.1 Victor-Purpura spike distance

The Victor-Purpura Spike distance (Dspike ,Victor and Purpura, 1996) was

originally inspired by methods used to to quantify the di�erence between gene

sequences (Sellers, 1974). The concept behind the algorithm is that the distance

between two spike trains (and more generally any trains of comparable

elements) is equal to the cost of transforming one train into another. The

process of transformation occurs through successive elementary steps, each

associated with a cost value. Computing the distance is therefore equivalent to

�nding the optimal sequence elementary steps for the transformation.

The transformation process between two spike trains is illustrated in �gure

4.3. Elementary operations in the case of the Victor-Purpura Spike distance are:

• Removing or adding a spike for a cost of 1

• Displacing a spike for a cost proportional to the displacement (ie. CV P ×δt)

CV P is the cost parameter of the Victor-Purpura distance, it re�ects the

temporal precision considered when comparing the spike trains. Indeed, when

displacing a spike, CV P × δt is necessarily lower than 2, else it would be more
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Figure 4.2: Application of information theory (metrical and Shannon) to
microneurography recordings performed by Johansson and Birznieks (2004). Only
the first spikes of 100 generated trials were used to discriminate between 5 different
stimulation directions: proximal (P), ulnar (U), distal(D), radial (R) and normal (N). The
Victor-Purpura distance DV P was used to compute the distances between spike trains
(Victor and Purpura, 1996). A. Evolution of the intra- and inter-stimulus distances
as spikes flow in. The perfect discrimination condition is met about 40 ms after the
stimulus onset, when the critical cutoff Dcritic can be determined. B. Shannon mutual
information (blue curves) and metrical information (red curves) over time. C. Distance
matrices before (left) and after (right) the occurrence of perfect discrimination. Only
10 presentations per stimulus were considered to generate these matrices. Whereas at
40 ms some interferences exist in the input-output mapping, all the events are are well
separated at 60 ms. (adapted from Brasselet et al., 2011b)



4.2. SPIKE TRAIN METRICS 55

A

B

Figure 4.3: Illustration of the transformation steps used to compute the Victor-Purpura
distance between two spike trains A and B. From top to bottom: a spike is deleted for
a unitary cost, then two spikes are successively displaced for a cost proportional to the
displacement. The total distance is the sum of the costs of these operations.

e�cient to simply perform a spike deletion followed by a spike creation operation

(for a combined cost of 2). Consequently, spike displacements are always limited

by T = 2/CV P . In the case where CV P = 0, then spikes can be displaced as

much as necessary (ie. the timing of spikes is no longer relevant for comparing

the two spike trains), and a spike count or rate comparison is performed.

4.2.2 Victor-Purpura interval distance

A subsequent metric relying of spike intervals (Dinterval, Victor and Purpura,

1996) has been derived from the Victor-Purpura Spike metric. The logic behind it

is identical, the only di�erence residing in that interspike intervals (instead of spike

times spikes) are now considered as the composing elements of the spike train.

The basic operations are similar with the addition and deletion of a spike (thereby

cutting and interspike interval into two) and the elongation or shortening of an

interval for a cost proportional to the length change. This operation is somewhat

equivalent to displacing a spike, and in addition performing the same displacement

to all subsequent spikes.

Interspike intervals are used to de�ne the timing of spikes relative to the

preceding spike occurrence. The use of this metric therefore implies taking into

account the relative times instead of absolute times to describe the

spatio-temporal pattern of spikes. This is relevant in conditions where the

system does not have a temporal reference point for comparing spiking activity
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�as is believed to be most mostly the case in biological sensory systems).

4.3 Microneurography recordings

A set of microneurography recordings was employed to study the encoding

performance of the primary FAI and SAI a�erent systems. The microneurography

experiments (Hagbarth and Vallbo, 1968) were conducted by R. Johansson's team

at UMEA University. The experiment consisted in percutaneously introducing

an electrode in the radial nerve of awake subjects (near the level of the elbow).

Subjects' arm were immobilized prior to the recordings and their nails glued to a

�xed object in order to avoid possible proprioceptive e�ects on the discharge of

mechanoreceptors. The tip of the electrode was placed close to a single axon so as

to record the activity from a single mechanoreceptive a�erent. Recorded a�erents

signals were pre-processed to determine the mechanoreceptor type (ie. FAI, SAI,
FAII, or SAII, see section 2.2.2). Similar microneurography experiments have

allowed to record the responses of a single a�erent to various tactile stimulations,

and so doing to precisely de�ne the receptive �eld of individual mechanoreceptors,

as well as characterize many of its dynamics (eg. fast adapting or slow adapting).

Eventually it led to estimates of the �ngertip's innervation properties such as the

number of a�erents, their density and their receptive �eld overlap.

For building the database on which was performed this analysis, a precise

device was used to indent the �ngertip's skin. Three stimulation probes with

various curvature levels where applied at controlled levels of force, di�erent

directions and angles as well as following di�erent time courses. The total

database recorded by Johansson and Birznieks (2004) comprised 145

mechanoreceptors of all four di�erent types, recorded in the presence of 111

di�erent stimuli. However, a high level of precision was required for recording

single a�erents and was di�cult to maintain for very long; consequently only a

subset of all mechanoreceptor responses could be recorded for the entire set of

stimuli. In this analysis, the activity from 60 FAI and 73 SAI a�erents were

recorded in response to 81 di�erent stimuli. The database used here was an

extended version of the database of 42 FAI mechanoreceptors Brasselet et al.

(2011b) used in their study.

Stimuli were characterized through four di�erent parameters (see �g. 4.4):

• The curvature of the probe: 0 m−1, 100 m−1, and 200 m−1
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• The magnitude of the force applied: 1 N, 2 N, and 4 N

• The direction of the force: ulnar, radial, distal, proximal, and normal

• The angle of the force application relative to the normal direction: 5◦, 10◦,

and 20◦

0-1m - flat
100-1m - 
convex

200-1m - 
convex

250 ms 250 ms 125 ms125 ms

time

Force (N)

4

0.2

FAI

SAI

A B

C

D

Figure 4.4: Experimental protocol during the microneurography recordings.A. A
mechanical probe indented the fingertip skin following five different stimulation directions
and various angles. B. Three probes with various curvatures were used. C. Plot of the
stimulation’s time course. The protraction phase lasted for 125 ms, the magnitude of
the force was maintained for 250 ms, before gradually decreasing during the retraction
of the probe (which lasted 125 ms). D. Populations of 60 FAI and 73 SAI afferents were
recorded at different positions on the fingertip. (adapted from Johansson and Birznieks,
2004)

A database of 50 trials per stimulus was constructed by adding a temporal

jitter to the recorded spike trains. Jitter values were taken following normal

distributions whose standard deviations were derived from experimental

recordings (Johansson and Birznieks, 2004). Jitter values were 0.8 and 1.1 ms

for FAI and SAI responses respectively. Note that an approximation was made

here, as the experimental values used for establishing the jitter only record �rst

spikes. The same jitter quantity was added to subsequent spikes which probably

led to an underestimation of activity variability in the database (Johansson and

Flanagan, 2009).
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4.4 Results

4.4.1 Spike metric comparison

A metrical information analysis was performed on responses of both FAI and

SAI to 81 stimuli. The time of optimal discrimination (see section 4.1) was

computed using both Dspike and Dinterval metrics over a range cost parameter

(Cvp) values. Comparing results obtained with the two metrics allowed to asses

the information content of two di�erent coding schemes: a coding of stimulus

information through absolute spike times (ie. Dspike), and one through relative

spike times (ie. Dinterval). Similarly to the analysis carried out by Brasselet

et al. (2011b), metrical information was computed using both entire spike trains

and �rst spike waves only. This analysis extends the work from Brasselet et al.

(2011b) in that both populations of FAI and SAI a�erents was considered, and

in that the informative content of interspike intervals was also assessed. The

results are presented in �gure 4.5. The actual time course of the metrical

information closely resembled that observed by Brasselet et al. (2011b) in their

analysis of FAI responses (see �g. 4.2) and is therefore not represented here.
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Figure 4.5: Optimal discrimination time over the spike metric parameter Cvp of FAI and
SAI primary afferent populations (right and left panels respectively). Dspike andDinterval

metrics were considered (blue and green curves respectively), for entire spike trains
(full line) and first spike (or interval) waves only (dashed line). Optimal discrimination
times above 220 ms indicate that the optimality condition was never reached. For both
populations, the best performance (ie. fastest optimal discrimination) was obtained when
considering the absolute timings (ie. Dspike) of the first wave of spikes.
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Optimally, all 81 stimuli could be discriminated 48 ms (FAI) and 64 ms (SAI)

after the �rst spikes were emitted (at approximately t = 20 ms). Using the Dspike

metric consistently led to higher performance in terms of reaching the optimal

discrimination point. Gains of up to 20 ms (FAI) and 45 ms (SAI) could be

obtained by considering the absolute timing of spikes rather than there relative

latencies. Isolating the �rst wave of spikes led to a faster discrimination when

using Dspike by approximately 20 ms in both populations, which points towards

interference coming from subsequent spikes when performing a classi�cation based

on absolute spike timings. Conversely, the opposite was true regarding relative

spike timings (ie. Dinterval). A faster discrimination could be attained using all

spike intervals instead of just the �rst interval. This suggests that some subsequent

(short) interspike intervals contributed more to the information accumulation on

the 81 stimuli than longer �rst spike intervals.

Both coding schemes displayed similar behaviors in response to Cvp. The Cvp
cost parameter re�ected the temporal precision at which the coding scheme was

being considered. High cost values, indicating a very high temporal precision,

systematically deteriorated the performance often completely preventing the

optimality condition from being reached (ie. time values above 220 ms in �g.

4.5). Very low (or null) Cvp values, (ie. considering almost exclusively spike

counts), also led to less than perfect performances. The best performances were

reach at Cvp = 0.16 ms−1 in both a�erent populations. As can be expected, a

higher temporal precision level was tolerated when considering only the �rst

spikes compared to entire spike trains. This is due to two complementary

factors: as more spikes are emitted, the encoding capacity of the spike count

increases, meaning that temporal coding might become, relatively, less and less

useful; meanwhile, the addition of jitters on individual spikes deteriorates more,

relatively, similar spike trains than highly dissimilar ones. The evolution of

discrimination times of entire spike trains as the temporal resolution considered

increases (ie. Cvp increases) reveals that although a performance gain is

noticeable, it is not considerable (approximately 20 ms for the FAI population

and 15 ms for the SAI population).

4.4.2 Afferent population comparison

Figure 4.5 reveals di�erences between FAI and SAI activity. Given the higher

noise in the entire SAI spike trains (see section 4.3), the best performance was
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reached for a lower Cvp values than was necessary in the FAI population. More

generally, SAIs generally performed less well than FAIs at higher Cvp cost

values. The performance di�erence between Dspike and Dinterval was

considerably more marked in SAI responses than in FAI responses. Overall, and

also in the best performing conditions, optimal discrimination was possible

earlier with FAI responses than with SAI responses.

The performance di�erence between the two populations in accounting for

individual features was also assessed. Metrical information theory was again used

to estimate the time of optimal discrimination according to one feature: either the

stimulation angle, the probe's curvature or the magnitude of the stimulation force,

all other parameters being equal. The best time of optimal discrimination was

recorded after performing an exhaustive search on Cvp values. For this analysis,

the 50 trials were grouped by batches of �ve trials and the analysis carried out on

each groups independently. Figure 4.6 shows the time of optimal discrimination

for each speci�c stimulus feature.
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Figure 4.6: Optimal discrimination of specific stimulus features using the Dspike (top)
and Dinterval (bottom) metrics. Error bars represent the standard deviation over 10
repetitions. Stars indicate a significant difference (Mann-Whitney U, p < 0.01).

In most cases, the FAI population outperformed the SAI population. Only for

the encoding of curvature did the SAI population prove more e�cient. Again, the

Dspike metric proved more e�cient in accounting for di�erences in responses to

di�erent features.
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4.5 Conclusions

Previous studies have established the importance of temporal coding in

peripheral a�erent activity (Johansson and Birznieks, 2004; Saal et al., 2009). In

particular, Brasselet et al. (2011b) used metrical information tools to assess the

encoding capabilities of �rst spike waves of 42 FAI a�erent responses to 81

stimuli. The current analysis reproduced and extended these results to a

population of 60 FAI and 73 SAI a�erents.

The results were coherent with previous studies and show that a perfect

discrimination of all 81 stimuli could be performed using a spatio-temporal

coding scheme in both FAI and SAI populations. However, the perfect

discrimination time was delayed when either ignoring, or considering too

precisely, the temporal structure of response patterns. Relying on �rst spikes

waves only, as opposed to entire spike trains, allowed for a faster discrimination

in optimal conditions. FAI and SAI populations followed a similar trend but FAI

remained consistently more e�cient in encoding information relevant to reach

perfect discrimination. This was true when considering the entire 81 stimuli as

well as, to a lesser extent, when accounting for individual stimuli features. The

SAI population did manage to outperform the FAI population in encoding for

the probe's curvature. SAI a�erents have indeed been shown to encode surface

curvatures (Goodwin and Wheat, 1999; Bisley et al., 2000), however, it is

unclear whether that should translate into a faster discrimination as was found

here.

In other sensory systems, it has been observed that the relative spike time

could be highly informative about the stimulus (Gollisch and Meister, 2008). In

the current analysis, representing the spatio-temporal structure of a�erent activity

using interspike intervals has been found to be su�cient to perform discrimination

of the entire stimuli dataset, but also less e�cient than using absolute spike times,

especially in the case of SAI a�erents. Similarly, spike counts contained su�cient

information for an entire discrimination of all 81 stimuli, but was less e�cient in

that perfect discrimination was reached later than when considering the temporal

patterns of the activity. However, the discrimination delay was only of about 15

ms when considering the SAI population response. Consequently, although taking

into account the temporal structure allows for better performance, satisfactory

performance could still be obtained through spike count based codes depending

on the temporal constraints of the task being performed.
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Chapter 5

Artificial tactile sensing

The third part of this manuscript will present a closed loop neural

architecture capable of �ne touch discrimination. The aim of the system is to

perform tactile discrimination of 2D shapes on a surface (ie. coarse textures) in

a dynamic scanning scenario. This is accomplished by relying exclusively on

cutaneous information provided by a sensor array, and the same information

should be used for deciding an appropriate movement policy.

The development of this arti�cial framework represents the main objective of

the current thesis work and has been realized following a three-fold requirement:

(i) neuro-mimetism, (ii) closed loop active sensing, and (iii) integration of

modular processing components.

With such a requirement in mind, a neuromorphic processing scheme was

adopted on the basis of the anatomo-functional and neural coding principles

introduced in Part II. The well-known anatomy and neurotransmission

mechanisms observed at the �rst stages of the somatosensory pathway were

reproduced. Neural signals were fed to a classi�er which algorithmically

implemented a probabilistic discrimination function. The resulting probability

estimates were used to devise �ngertip moving strategies. Low-level motor

control was supported by a bio-inspired model of the cerebellum. The system

presented in Part III of this manuscript gave rise to di�erent studies (Bologna

et al., 2011, 2012; Pinoteau et al., 2012; Bologna et al., 2013), the results of

which are included here. This work was part of a collaborative e�ort; the

author's main contributions included the modeling of the �rst and second order

neurons as well as the analysis of the their neuronal responses. The author was

also responsible for the implementation, adaptation and integration of the

di�erent components of the complete architecture.

The present chapter reviews the state of the art from both a neural modeling

and a robotic tactile sensing perspective, and helps position the novel architecture

presented here with respect to previous studies.
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5.1 Modeling of the peripheral somatosensory
system

5.1.1 Computational models of primary afferents

Primary a�erents have been the subject of many studies over the past

decades (for review see Johnson and Hsiao, 1992; Johnson, 2004; Johansson and

Flanagan, 2009) and along with it a number of models have been proposed to

better reproduce and understand their dynamics. Previous works have especially

focused on models of FAII (Freeman and Johnson, 1982; Bell and Holmes, 1992;

Kim et al., 2010), FAI (Freeman and Johnson, 1982; Slavik and Bell, 1995;

Looft, 1996; Bensmaia, 2002; Güçlü and Bolanowski, 2004; Sripati, 2006; Kim

et al., 2010) and SAI (Freeman and Johnson, 1982; Slavik and Bell, 1995;

Sripati, 2006; Lesniak and Gerling, 2009; Kim et al., 2010; Gerling et al., 2013)

mechanoreceptor types. Most of these models relied on spiking neuron

components to emulate the a�erent activity. In fact, the computational model

primarily chosen was the leaky integrate-and-�re neuron (Lapicque, 1907) which

was adopted under various forms for emulating SAI dynamics especially

(Freeman and Johnson, 1982; Slavik and Bell, 1995; Bensmaia, 2002; Lesniak

and Gerling, 2009; Kim et al., 2010; Gerling et al., 2013). Meanwhile, Sripati

(2006) used tensile strain in the skin to try to account for SAI activity, and

receptive �eld deformation for FAI responses. Güçlü and Bolanowski (2004)

chose to reproduce FAI activity using a Markov process in which neurons had a

probability of switching between �ring states.

These models were validated using a �ring rate coding scheme, probably

because these were the data most accessible in the literature. For instance,

Lesniak and Gerling (2009) considered �rst spike latencies when analyzing their

model's response but did not have data available to compare with. Concerning

SAI neurons, the spatial modulation of the activity (see section 3.2.1) was often

considered to evaluate the model (Lesniak and Gerling, 2009; Sripati, 2006). In

some cases, this was indirectly estimated by taking into account spatial event

plots (Johnson and Phillips, 1988). These are a form of representation consisting

in displaying the recorded spikes onto the stimulus pattern in order to obtain a

spatial image of the outgoing activity. A spatial modulation of the activity is

directly visible on the plot as the stimulus shape is reproduced in the neural

activity. One model in particular (Güçlü and Bolanowski, 2003) concentrated on
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reproducing isomorphic properties of primary a�erents.

Among these models, the most complete is perhaps the one from Kim et al.

(2010) which uses a leaky integrate-and-�re neuron whose inputs are the �ltered

versions of the complete skin indentation signals (ie. indentation position and

velocity for SAI a�erents, and velocity alone for FAI). In order to add some

limited stochasticity to the model, a Gaussian noise was added to the membrane

potential. The model was validated by comparing its output spiking dynamics

with recorded spike trains in terms of �ring rate, spike distance �using the Victor-

Purpura distance (Victor and Purpura, 1996)� and temporal jitter on spikes. The

model was successful in capturing the response properties of mechanoreceptive

a�erents across a wide range of vibratory frequencies and in predicting the timing

of individual spikes with a millisecond accuracy. The model also managed to

reproduce spatial event plot representations of embossed characters. One of the

main limitations of the model was its inability to account for nonlinearities in the

response. This led to a divergence between predicted and observed responses of

FAI and FAII a�erents for large indentation amplitudes. SAI a�erents, on the

other hand, remained accurately predicted across stimuli of all amplitudes thanks

to the linearity (in terms of rate) of their responses.

The input signals for these models were simulated either using spatial �lters

(Güçlü and Bolanowski, 2003, 2004) or by modeling mechanical deformations on

the skin (Sripati, 2006; Lesniak and Gerling, 2009; Gerling et al., 2013). In the

model presented by Freeman and Johnson (1982), a periodic stimulation signal

representing the skin's vibrations was directly fed into the model's equation. In

only one case were the received inputs generated by a physical tactile sensor

(Spigler et al., 2012).

5.1.2 Computational models of the cuneate nucleus

Few computational studies of the cuneate nucleus have been carried out. The

earliest model found, focused on reproducing the dynamics of individual cuneate

cells. A multi-compartmental approach was adopted, with the Hodgkin-Huxley

(Hodgkin and Huxley, 1952) mathematical model used to membrane potential

dynamics. Model neurons successfully reproduced the spontaneous activity as

well as the inhibited and desinhibited states observed experimentally. The model

was subsequently integrated in a more complete cuneate network (Sánchez, Barro,

Marino and Canedo, 2001) reproducing the anatomical properties of the biological
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system. This network contained a�erent excitation and inhibition of cuneate

neurons �to create center-surround receptive �elds�, recurrent lateral inhibition �

so that only the neurons with the highest input in a region could be activated�, and

recurrent lateral excitation �to sensitize neurons with overlapping receptive �elds.

The network properties allowed the cuneate model to act as an edge detector, and

later as a motion detector (Sanchez et al., 2002). Another iteration of this model

allowed to faithfully reproduce both tonic and oscillatory �ring modes of cuneate

neurons (Sánchez et al., 2003). The same model eventually allowed not only

feature extraction of edges and motion, but also a progressive transmission of the

information prioritizing regions with higher contrast and �nishing with those with

lower contrast (Navarro et al., 2005, 2006). In all these studies, a�erent inputs to

the cuneate network were represented by ionic currents.

The functional properties of the cuneate nucleus model from Sánchez, Barro,

Marino and Canedo (2001) were implemented in a robotic collision avoidance

task (Sanchez, Mucientes and Barro, 2001). The cuneate nucleus then acted as a

spatial and a temporal �lter of the environment �in this case seen through sonar

data� to select salient regions in a trajectory while removing persistent objects

irrelevant for the task.

Another approach has been adopted by Brasselet et al. (2009), who fed spatio-

temporal activity patterns from microneurography recordings into a feed forward

network of cuneate-like cells with plastic connections. No lateral or inhibitory

connections were implemented in the model. The result was the emergence of a

network with very few functional connections but high e�cacy synapses, similar

to what has been observed in the decerebrated cats (Bengtsson et al., 2013).

No studies were found to model bio-mimetically both �rst two stages of the

peripheral somatosensory system. Bankman et al. (1989), however, did proposed

a model of the entire ascending somatotosensory system to account for the

isomorphic encoding observed at the cortical level (see section 3.2.3). To do so,

it relied on a three layer feed forward neural network with inhibitory lateral

connections, mimicking the di�erent processing stages of the biological system

(see section 2.1).
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5.2 Bio-inspired solutions for fine touch sensing
in robots

5.2.1 Bio-inspired tactile sensors

An increasing body of literature has called for the development of biologically

inspired tactile sensing systems (Lederman and Pawluk, 1992; Howe, 1993;

Dargahi and Najarian, 2004; Maheshwari and Saraf, 2008; Dahiya et al., 2010;

Loeb et al., 2011a; Dahiya and Valle, 2013; Yousef et al., 2011) for robotic

applications. In their review, Dahiya et al. (2010) have compiled a 11 properties

of the biological system that should serve as design criteria for tactile sensing in

general robotic systems:

1. The tactile system is composed of many sensor types with di�erent functional

roles (Johnson, 2001). In robotics, this should be emulated by relying on

miniaturized sensors optimized for the extraction of one particular contact

feature in addition to multi-functional ones. In the case of �ne touch, coarse

structures are encoded by SAI a�erents (see section 3.2.1) and other receptors

types (ie. FAI and FAII) are only useful for encoding very �ne textures.

2. The spatial resolution of sensor arrays should depend on its function and

location. On �ngertips designed for �ne touch, the spatial period should be

approximately 1 mm (Johnson and Hsiao, 1992).

3. Tactile sensing should be highly sensitive and have a wide dynamic range

(Dario, 1991). This is especially relevant for manipulation tasks. For

discriminative touch, the dynamic range can be lower, as long as it is sensitive

enough to detect the spatial structure of the surface.

4. Sensors should be able to account for both static and dynamic stimulations.

This allows to scan a surface �as opposed to raising, moving, and lowering the

sensor� when performing �ne touch explorative task. It is also noteworthy that

SAI mechanoreceptors are 10 times more sensitive when delivered a dynamic

stimulation than they are to a static one (Johnson and Hsiao, 1992).

5. Robotic tactile sensors should respond quickly, especially when involved in a

closed control loop. Considering the somatosensory system as a benchmark, each

touch element should respond within 1 ms from the stimulus delivery.

6. As in humans, tactile information should be processed at di�erent levels in
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order to lighten the computation load of the central processing unit. Additionally,

preprocessing the sensory data may also help optimize the transfer of relevant

information.

7. Depending on its use, sensory information should be transfered via di�erent

pathways and processed at di�erent speeds and/or with di�erent priority (this

point can be discarded in the case of �ne touch sensing).

8. To emulate the visco-elastic properties of the skin, sensors may be embedded

into or covered with elastic material. This may have varying e�ects (eg. on

force and spatial sensitivity) depending on the material chosen and the sensor

type; however it allows to increase the contact area and is especially helpful in

manipulation tasks.

9. A covering layer on the sensors can also be used to support, enhance or correct

some of their properties. This is somewhat akin to the role of papillary ridges

on the �ngertip, which are believed to contribute to the encoding properties of

mechanoreceptors (Scheibert et al., 2009).

10. Much like the skin, robotic taxels should be robust, �exible, conformable,

stretchable, and soft. This property should be modulated according to the

environment the robot is designed to interact with.

11. Sensors should preferably have linear responses and low hysteresis. However,

human mechanoreceptors do not comply with these two requirements. Dahiya

et al. (2010) argue that these drawbacks are compensated by a large number of

receptors which allow the central nervous system to still extract enough

information. Yet it is also probable that non-linearity and hysteresis support the

neural coding mechanisms and account for part of the preprocessing evoked in

point 6.

When considering tactile sensing of spatial patterns, only a few of the

properties evoked in this list are truly essential. The sensor must be able to

encode vibrations (for very �ne textures) or spatial indentation patterns (for

coarser patterns). In this second case, a high spatial resolution is required to

detect small spatial modulations. In both cases, an important temporal

resolution is necessary to properly encode and convey the information. Finally,

being responsive to dynamic stimulations (especially) is necessary for encoding

�ne textures (Katz, 2013) and advised (if only to simplify the movement policy)

for coarser textures as well.
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Over the past years, many new sensors satisfying several of these properties

have been designed (for reviews see Maheshwari and Saraf, 2008; Dahiya et al.,

2010; Loeb et al., 2011a; Yousef et al., 2011) and used in texture discrimination

tasks (Lin et al., 2009; Oddo et al., 2011; Engel et al., 2006).

5.2.2 Neuromorphic processing of tactile signals

A number of tactile sensors have drawn a parallel between their dynamics

and function, and those of cutaneous mechanoreceptors (Shimojo and Ishikawa,

1993; Lin et al., 2009; Oddo et al., 2011; Engel et al., 2006). This was generally

linked to the stimulus features being extracted by the sensor; however, the

processing (if any) operated on the sensory signals prior to classi�cation was

rarely neuromorphic. Similarly, and under certain circumstances consequently,

the classi�cation processes were always implemented algorithmically, although

the use of Bayesian processes (eg. Fishel and Loeb, 2012) or non spiking neural

networks (eg. Germagnoli and Magenes, 1996; Caiti et al., 1995) may somewhat

re�ect real biological processing mechanisms (Pouget et al., 2013).

A few studies have attempted to process tactile information using biologically

inspired neural networks. Dario et al. (2000) have developed an impressive system

for grasping and recognizing objects based on anthropomorphic principles. The

robotic hand was capable of integrating visual information of the grasped object

edge, proprioceptive information on the arm con�guration, and tactile information

on the contact, for processing by a neural network with a reinforcement learning

paradigm. More recently, Ratnasingam and McGinnity (2011b) designed a system

capable of object recognition based on spiking neural networks. In this study,

spatio-temporal patterns of spikes encoded the joint angles (ie. proprioceptive

information) as the object was grasped in the robotic hand, and processed by a

feed forward network. In a subsequent study, the system's performance was tested

using di�erent neural coding schemes (Ratnasingam and McGinnity, 2011a).

Spigler et al. (2012) provide an example of neuromorphic processing of �ne

touch signals from a robotic tactile sensor. Signals from a 2×2 MEMS array

were converted into trains of action potentials through an Izhikevich neuron

model (Izhikevich, 2003). The tactile sensor provided 16 channels to transduce

mechanical stimulation features at a density equivalent to that of SAI a�erents

on the �ngertip (ie. approximately 70 units/cm2). The system was tested by

passively scanning �ne textures and performing a discrimination of surfaces by
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comparing the output spiking signal's spectrograms. This work therefore

proposes a neuromorphic processing of tactile information emulating that

performed by �rst order neurons in the peripheral somatosensory system.

5.2.3 Closed-loop tactile discrimination

Touch is an interactive sense. Hence, object's tactile properties are extracted

by performing a series of movements. In humans, experimental psychologists

have identi�ed six such exploratory behaviors: compliance is determined by

applying pressure, surface texture is assessed through lateral sliding movements

(see chapter 3), static touch is for temperature, enclosure is used to estimate

shape and volume, hefting is used to determine wieight, and the exact shape is

found through contour following (Lederman and Klatzky, 1987, 1993).

Numerous examples of active sensing in closed-loop robotics exist. They

primarily focus on tactile perception of object shape and grasp-related control

(Howe, 1993; Asfour et al., 2008; Saal et al., 2010; Petrovskaya and Khatib,

2011; Chitta et al., 2011; Romano et al., 2011; Bekiroglu et al., 2011).

Meanwhile, texture discrimination using tactile sensors has also been extensively

studied (Howe and Cutkosky, 1993; Oddo et al., 2011; Sinapov et al., 2011a;

Decherchi et al., 2011; Jamali and Sammut, 2011; Spigler et al., 2012). In

particular, (Sinapov et al., 2011a) has demonstrated that using multiple

exploratory movements can greatly increase (from 65% to 80%) the recognition

rate of the system.

Instead, fewer works have sought to discriminate �ne or coarse textures using

closed-loop systems. Shimojo and Ishikawa (1993) provides an example of active

sensing system in which a spatial �ltering operated by the tactile sensor changes

characteristics depending on its motion. A parallel with e�erence copy (Blakemore

et al., 2000) is drawn by the authors with the motor system signaling the sensory

system to adapt to the motion performed.

A closed-loop in which motion policy is modulated by tactile percepts is

proposed by Fishel and Loeb (2012). In this study, a multi-modal bio-mimetic

tactile sensor was used to provide the system with sensory inputs about a

texture being scanned. Bayesian inference was used to discriminate between

textures. The estimated probabilities also allowed to devise a movement policy

that would optimally separate ambiguous textures in order to perform the
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discrimination. In a subsequent application, a reinforcement learning mechanism

was added to the system (Xu et al., 2013).

Although bio-mimetic in their sensors and in their exploration policy (Loeb

et al., 2011a), no closed-loop system was used in their system to operate a

neuromorphic processing of tactile signals.

5.3 Conclusions

In this chapter an overview of the existing models of �rst and second order

a�erents has been given together with a summary of the current trend in

development of touch sensors and closed-loop robotic implementations for tactile

signals discrimination.

From the neural modeling point of view, multiple precise models reproducing

the dynamics of primary a�erents have already been established, along with two

groups of modeling studies on the cuneate network. However, these models have

rarely been combined into an integrative processing stream, furthermore with

input signals originating from a tactile sensor.

From the neuro-robotics perspective, many bio-inspired sensors reproducing

several of the mechnaoreceptors properties now exist. Yet, a neuromorphic

framework for the processing of these signals has only rarely been considered.

Similarly, although it has been extensively observed in humans, and despite the

numerous studies on texture discrimination, few systems adopt active sensing

strategies to optimize their performance.

The work presented in what follows is therefore novel in that it combines many

composing elements which not only have been studied separately, with di�erent

aims and approaches, but have also never been built into an integrative neuro-

robotic system.





Chapter 6

Closed loop neural architecture

The current chapter provides a presentation of the developed closed loop neural

architecture for processing �ne touch information. The modules composing the

system will be described individually, as well as how they were integrated in the

complete neuro-mimetic framework. The system was tested in a Braille reading.

Its performance will be described in chapter 7.

6.1 System overview

The closed loop architecture of the neural architecture (illustrated in �g. 6.1)

was designed in a modular nature so that each element could be individually

studied and replaced. An arti�cial touch sensor acted as the �ngertip skin to

provide analog information on the tissue deformations generated by the stimuli.

The signals were transduced into spiking activity by a network of primary

neurons acting as mechanoreceptors and primary a�erents. The neuronal

activity generated was relayed and processed by a network of second order

neurons emulating the role of the cuneate nucleus of the brainstem. The

outgoing spiking activity was used for tactile discrimination by a probabilistic

classi�cation system which generated a probability distribution for the stimulus

being scanned. The shape of this distribution was used by a high-level controller

to shape the active sensing policy of the system. A low-level controller, following

a cerebellar like structure, allowed �ne tuning of the movement to ensure that

the trajectory followed by the �ngertip resembled that which was desired.
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1st order encoding

(mechanoreceptors)

2nd order processing

(cuneate neurons)

Probabilistic
classification

High-level
controller

Low-level
controller

(cerebellum)

Arm
Tactile sensing

(artificial touch sensor)

(Braille character)

Tactile stimulation

Figure 6.1: A schematic representation of the closed loop system. Clockwise, starting at
the bottom left: Braille character-like tactile used as stimuli indent the artificial touch
sensor. A network of first-order neurons mapped the analogue readouts of the touch
sensor onto spiking (mechanoreceptor-like) spatiotemporal patterns. Then, a downstream
network of second-order neurons processed the primary afferent signals (emulating the
cuneate nucleus’ function) prior to their transmission to a probabilistic classifier. The
estimated posterior probability distribution across stimuli population allowed a high-
level controller to modulated the sensing process by adapting the scanning speed of the
fingertip. Finally, a cerebellar-like neural controller provided low-level adjustments of
motor commands before their actual execution by the hand-arm platform.

6.2 Tactile stimuli and artificial skin models

6.2.1 Stimulus alphabet

The �ne touch discrimination performance of the system was tested on a Braille

reading task. Braille is a tactile writing system developed in 1824 by Louis Braille

for visually impaired and blind individuals. Braille characters are formed by a

pattern of raised dots spread over the two columns and three lines that compose

individual cells. In its standard form (also known as Grade 1 Braille), each cell

corresponds to a single letter (see �g. 6.2) or punctuation symbol. Higher levels

of Grade introduce abbreviations and contractions to the traditional alphabet.

Over time, the Braille alphabet has evolved into multiple standards and been

adapted to �t di�erent languages. Although the size and spacing of the dots vary

depending on the standard, these variations rarely exceed 0.5 mm in inter-dot
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Figure 6.2: Braille cells used as stimuli. Top. The 26 lower-case characters of the
standard Braille alphabet. Bottom. Dimensions of the scaled Braille cells and dots used
in the stimulation protocol.

dimensions (generally comprised between 2.2 and 2.6 mm), and 2 mm for inter-

cell spacings (generally higher than 6 mm). Regardless of the standard, and given

the dimensions considered, Braille reading can certainly be regarded as a �ne

touch discrimination task. It is important to note however that although Braille

was used as stimulus, other dot patterns might just as well have been considered.

In particular, no attempt has been made to organize Braille letters in order to be

syntactically correct, nor was syntax or semantics ever taken into account to help

in the discrimination of the characters.

The alphabet used in the stimulation protocol was composed of the 26 lower-

case characters of Grade 1 (or standard) Braille. The choice was made to use a

scaled version (1 : 1.7) of the Braille cells from the �American National Library

for the Blind� standard. This scaling was necessary to e�ectively simulate the

responses primary a�erents would have to raised Braille dots given the larger size

of the sensors composing the arti�cial skin. Had the scaling not been made, Braille

cells would have been comparatively smaller relative to the �ngertip, making the

reading task noticeably more complicated. Manufacturing constraints did impose

some slight variations in the �nal size of the Braille dots used, however these were
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of the order of a tenth of millimeter and therefore had little consequence on the

performance of the system. The �nal dimensions of the Braille characters are

illustrated in �gure 6.2.

6.2.2 The artificial touch sensor

A

10 mm

Touch
sensor

Neoprene B

1 mm

1 mm

3 mm

3 mm

Figure 6.3: The artificial fingertip consisted of 24 capacitive sensors distributed following
a 6 × 4 array configuration. A. A neoprene patch positioned over the touch sensor
modulated mechanical indentations. B. Dimensions of the artificial fingertip (with
individual sensor size and inter-sensor distances).

The arti�cial skin used for this system was a prototype developed at the Italian

Institute of Technology consisting of an array of 24 capacitive sensors (Cannata

et al., 2008; Bologna et al., 2010). The issue of hysteresis often observed in

capacitive sensors (Loeb et al., 2011b), only occurred here when saturating the

sensor with a high indentation force. A 2.5 mm thick neoprene layer (�g. 6.3

A.) covered the entire array to protect the underlying sensors during mechanical

indentation as well as to passively modulate the exerted pressure. Each sensor

had here a square form with a side dimension of 3 mm and was separated from

its neighbors by 1 mm spacings (�g. 6.3 B.). The sensors were arranged following

a rectangular grid layout with 6 lines and 4 columns, making the sensitive surface

total at 18 × 23 mm2. When the spatial rescaling applied to the Braille characters

is taken into account, the density of sensors on the arti�cial skin reached 17

sensor/cm2.

A preliminary study was carried out to characterize and validate the tactile

sensor prior to its use in the closed-loop �ne touch architecture. Two di�erent
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experimental protocols were carried out to investigate the basic response

properties of the sensors.

The �rst experiment aimed at studying the response of the device to a static

stimulation, in the sense that the position of the mechanical indentation did not

vary while the stimulation was performed. A 4 mm diameter cylindrical probe,

mounted on a load cell (see �g. 6.4 A.), was used to indent the neoprene at

regular positions. The probe was lowered to indent the neoprene at a given

intensity, when the sensor response stabilized, the value was recorded. The

probe was then raised again, moved horizontally 0.2 mm to the next position

and lowered again onto the neoprene. In total, the touch sensor was stimulated

at 6161 di�erent positions over the entire array surface according to a regular

grid layout (with a 0.2 mm step). Results showed that each sensor's receptive

�eld was Gaussian-shaped with a peak amplitude of 200 ± 3.3 fF (mean ± std)

and width 2.5 ± 0.044 mm. This procedure also allowed us to test the stability

of the device, as well as the homogeneity property of its sensor responses across

di�erent positions in the array. It was possible to observe a small degree of

overlapping between the sensors' receptive �elds, probably due to the super�cial

neoprene layer. The testing was repeated for multiple indentation levels and

observed the same Gaussian-like receptive �elds with equivalent widths and

peak amplitudes proportional to the indentation intensity. In the conditions of

maximal indentation of the neoprene, the recordings showed a high

signal-to-noise ratio (50 dB) for each of the 24 sensors.

The second experimental protocol sought to similarly characterize the touch

sensor responses, but to a stimulus moving dynamically over the sensors. The

�ngertip was mounted on the mobile section of a motorized linear stage named

8MT195 and commercialized by Standa Ltd. The mounted device was then

made to travel over a Braille line of 6 di�erent characters (see �g. 6.4 B.). The

arti�cial �ngertip was rubbed over the Braille dots at a speed of 15 mm/s during

200 recording trials. For this experimental setup, only one indentation level was

used. It was calibrated to achieve an appropriate signal-to-noise ratio (32 dB)

while minimizing possible interferences due to the visco-elastic properties of the

neoprene. Averaging over all recorded responses to the dynamical stimuli, a

Gaussian shaped receptive �eld with a peak amplitude of 42.88 ± 8.9 fF (mean

± std) and a width of 2.9 ± 0.32 mm appeared. Receptive �eld overlap was

observed to be higher than in the static stimulation protocol.

The analog response of each sensor had an intensity proportional to the



80 CHAPTER 6. CLOSED LOOP NEURAL ARCHITECTURE
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Touch sensor array
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Motorized linear stage

Braille character

Touch sensor array

B

Figure 6.4: A. The static stimulation setup consisted of a load cell allowing the touch
sensor to be stimulated at different positions and with different indentation forces. B.
The dynamic stimulation setup consisted of a motorized linear stage (commercialized by
Standa Ltd), with the artificial sensor mounted on its mobile section scanning a line of
Braille characters at 15 mm/s.
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indentation level. Consequently, stimulating a sensor at the periphery of its

receptive �eld was equivalent to applying the stimulus at its center but with a

lower intensity. As the intensity level on the stimulation did not vary in all other

experimental protocols, the response intensity was informative on the position of

the stimulation point. With a very high signal to noise ration observed in both

protocols, the localization of the stimulus should theoretically prove fairly easy

to extract. However, the acquisition frequency of each capacitive pad was 20 Hz,

which created added a level of imprecision in the case of dynamic stimulations.

These testing experiments allowed to build a dataset of analog responses which

served as a basis for developing a simulated version of the arti�cial touch sensor.

A family of 24 noisy Gaussian kernels were spread over the input space based on

the spatial distribution of the real array. Each kernel modeled the response pro�le

of an individual sensor, with white noise added to the amplitude and width of the

response, 2.5 fF and 0.1 mm respectively. Also, a Gaussian noise on the position

of each simulated stimulus (std = 0.1 mm) accounted for possible positional errors

during real stimulation conditions.

6.3 Processing of tactile signals

6.3.1 First order neurons

The analog signals generated by the sensors of the arti�cial skin where

converted into biomimetic spiking signals patterns by a network of modeled

neurons. These �rst order neurons acted as a population of cutaneous �ngertip

slow adapting type I (SAI) mechanoreceptors, converting analog skin

deformations following mechanical indentations onto spiking spatiotemporal

patterns. The precise response of each �rst order neuron was implemented

through a leaky-integrate and �re model (Lapicque, 1907), and their membrane

potential dynamics were determined by the di�erential equation:

C · dVi(t)
dt

= −g ·
(
Vi(t)− V ′

)
− k ·Ai(t) (6.1)

in which C = 0.5 nF denotes the membrane capacitance and g = 25 nS the

passive conductance, resulting in a membrane time constant equal to τ = C/g =

20 ms. V ′=-70 mV is the resting membrane potential. The term k·Ai(t) represents
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the depolarizing input current, whose intensity was computed by multiplying the

analog response of the ith touch sensor: Ai(t) (measured in femtoFarads) by a

gain factor k = -390 pA/fF. Each �rst order neuron received current input signals

from a single sensor (see �g. 6.5 for a representation of the connectivity layout).

These parameter values were determined by comparing the output spike trains

of simulated �rst order neurons against microneurography recordings of human

mechanoreceptor responses Johansson and Birznieks (2004).

Each neuron emitted an action potential whenever its membrane potential Vi(t)
reached a threshold value Vth(t). Immediately after a spike event, the neuron was

hyperpolarized to Vi(t) = Vreset = -100 mV, and the dynamics of its membrane

potential frozen during a refractory period ∆tref = 2 ms. We also modeled the

spiking adaptation phenomenon by means of a �threshold fatigue� Chacron et al.

(2003), which consisted in increasing the threshold Vth by 50 mV following each

neuron's discharge, making it harder for the neuron to spike again (i.e. bounding

its response �ring rate). In the absence of spikes, Vth decreased exponentially

back to its resting value V ′th following the equation:

dVth(t)
dt

= −Vth(t)− V ′th
τth

(6.2)

where τth = 100 ms, and V ′th = -50 mV. No noise input was added to this

neuronal model, and the output spike times were therefore entirely determined

by the input signal from the sensor and previous activity of the neurons.

6.3.2 Second order neurons

The processing of a�erent signals was carried out by a downstream network of

second order neurons (see �g. 6.5), modeling a population of brainstem cuneate

cells. The cuneate nucleus constitutes the �rst relay mediating peripheral-to-

central transmission of tactile signals originating from the �ngertips (see section

2.3). The neural model used in this study was derived from a previous work

based on neurophysiological data from cat cuneate neurons (Brasselet et al., 2009;

Bengtsson et al., 2013).

Each cuneate neuron received its inputs from either one or several adjacent

mechanoreceptors through non-plastic synapses. On average, 1.9 ± 0.6 (mean ±
std) mechanoreceptive a�erents connected with every second-order neuron. As
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Figure 6.5: The implemented ascending somatosensory pathway. From left to right: the
analog outputs from the artificial touch sensor stimulated a network of 24 first-order
neurons according to a one-to-one projection layout. This early processing stage allowed
analog sensory inputs following mechanical indentation to be converted into spike train
patterns, mimicking fingertip mechanoreceptors. A downstream network of 49 spiking
neurons then decoded and re-encoded primary afferent signals, acting as a sub-population
of second-order cuneate neurons in the brainstem. The spatiotemporal output of this
second-order network served for a probabilistic classification of fine touch stimuli.

seen in section 2.3, this sparse connectivity is coherent with physiological

observations that very few (less than ten) functionally contribute inputs to

individual cuneate cells (Bengtsson et al., 2013). All connections were excitatory

and designed to create a purely feed forward network. The excitatory

projections from �rst to second order neurons followed a scheme that resulted in

second order receptive �elds such as those illustrated in �gure 6.6. The smaller

receptive �elds combined with high synaptic e�cacy allowed topographical

information from the mechanoreceptors to be maintained at the level of the

second order output space. At the same time, the dimension and shape of the

other receptive �elds, combined with the synaptic weight distribution of the

mechanoreceptor-to-cuneate projections, led to some cuneate neurons to act as

partial coincidence detectors (Hop�eld, 1995) capable of accounting for both

single primary neuron activation and multiple co-activations, thus enriching

their coding dynamics.

Cuneate neurons were modeled according to the spike-response model

(Gerstner and Kistler, 2002), with the incorporation of a noise model, known as

escape noise. The escape noise model relies on a stochastic process which
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Figure 6.6: Sample of receptive fields (projected on the 24 sensors of the artificial
fingertip) of the second order neurons. The many-to-many connection scheme used to
drive second-order neurons resulted in receptive fields sampling either unitary or multiple
primary afferent activity (up to three adjacent mechanoreceptors).

computes a spiking probability depending on the di�erence between the

membrane potential and the spike threshold. In can therefore lead to some

spontaneous activity or to the suppression of a spike which would normally have

been emitted.

Whenever multiple a�erent spikes excited the neuron within a short time

window, they induced a compound membrane potential depolarization equal to:

V (t) = V ′ +
∑
i,j

wi ·∆V (t− t̂ j
i ) (6.3)

∆V (t) ∝
√
t · exp(−t/τ) (6.4)

with V ′ = −70 mV denoting the resting potential, i the presynaptic neurons, and

j indexing the spikes emitted by a presynaptic neuron i at times t̂ j
i . The synaptic

weight wi of the projection from the presynaptic unit i was taken so as to guarantee

a reliable transmission of primary a�erent signals and avoid a saturation of the

second order neurons' activity. The values were �xed at wi = 0.04 and wi = 0.028
for connections belonging to cuneate units with receptive �elds regrouping one

and two/three mechanoreceptive units respectively (see �g. 6.6). The function

∆V (t) represented a unitary EPSP (excitatory postsynaptic potential), with τ =

2 ms indicating the decay time constant of the EPSP pro�le.

At each time step, the spiking probability p(t) of the neuron depended on the

following functions:

p(t) = 1− exp
(
− f(t) ·R(t)

)
(6.5)

f(t) = r0 · log
(

1 + exp
(
V (t)− Vth

Vf

))
(6.6)

R(t) = (t− t̂− τabs)2

τ2
rel + (t− t̂− τabs)2 H(t− t̂− τabs) (6.7)
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with f(t) denoting the instantaneous �ring rate, determined by the constant r0 =
11 Hz, the threshold potential Vth = −65 mV, and a gain factor Vf = 0.1 mV.

The function R(t) determined the refractoriness property of the neuron, with t̂

indicating the time of the last spike emitted, τabs = 3 ms the time constant of

the absolute refractory period, τrel = 9 ms the time constant of relative refractory

period, and H the Heaviside function.

6.3.3 Probabilistic classification of tactile percepts

After being converted and processed by the two �rst neural stages, tactile

signals were classi�ed online by a trained Naïve Bayesian Classi�er (NBC)

(McCallum and Nigam, 1998). The NBC belongs to the family of probabilistic

classi�ers relying on Bayes' rule to compute a multinomial posterior probability

distribution for sample classes (Duda et al., 2001). The NBC's computations are

performed with the underlying hypothesis that input features are independent

from one another. This simpli�cation allows the NBC to provide a fast

classi�cation and making it suitable for applications requiring frequent

estimations of class posterior probabilities and strict execution-time constraints.

It is also not the �rst time an NBC process has been applied to neural data

(Truccolo et al., 2008).

The NBC was trained on a database of simulated second order cuneate activity.

The database consisted of the cuneate responses to 100 repetitions for each of the

26 Braille characters (where 1 repetition means to 1 complete scan of the letter

by the arti�cial touch sensor). These data points were generated by swiping

the �ngertip over the characters at a constant speed of 30 mm/s. For analysis

purposes only, the same protocol was used to also train the NBC based on the

�rst order activity that drove cuneate responses in the database mentioned above.

For each letter, and for every repetition of that letter, a binning procedure

mapped the spatiotemporal patterns provided by the cuneate population onto

spike count class vectors. This was done in a cumulative manner, meaning that

bin width increased incrementally such that bi = i × ∆t (see �g. 6.7), where bi
is the width of the ith bin and ∆t the temporal bin increment. All bins sampled

the neural responses starting from the time of the �rst spike emitted by the

cuneate network. Consequently, larger bins also took into account the activity

already counted in previous, smaller temporal bins. Every dimension of the spike

count vector corresponded to the activity of a single cuneate neuron. Hence,
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the resulting feature vectors had the same dimension as the second order neuron

population. The resulting spike count vectors formed a dataset that was used to

train the NBC.

...

2nd order
cuneate neurons

∆t
2∆t

3∆t

r1

r2

r3

Figure 6.7: The output spiking activity of the cuneate network was binned by means
of incrementally increasing time windows i×∆t, with i = 1, 2, . . . , n, and mapped onto
spike count class vectors ri.

During the training, the NBC computed the likelihood of many (a few

hundreds) response classes vectors for each character. Each class e�ectively

represented the response activity to that letter at a given point of the scanning

process. Later, during recognition, the NBC estimated the posterior probability

of a letter as the sum of the posterior probabilities of each response class vectors

corresponding to that letter. For example, in the context depicted in �g. 6.7 A.,

the recorded cuneate activity r was obtained with the �ngertip scanning the

letter x. The response vectors corresponding to bins ∆t, 2∆t, . . . , n∆t would

then be labeled as rx1 , rx2 , . . . , rxn . The resulting training set (composed of all

response vectors rxi) would serve the NBC to compute the likelihoods p(rxi |x),
∀i. Finally, the posterior probability of x would simply be computed as

p(x|r) =
∑
i p(x|rxi).

A preliminary analysis was carried out to study the in�uence of the bin width

on recognition rates and speeds (see �g. 6.8 A. and B., respectively). These results

were obtained by using a range of ∆t values to train the NBC on the basis of 100

repetitions per letter, and then to test its classi�cation performance on a probe

set of 50 repetitions per letter. Based on these results, we could select a bin

width of ∆t = 1 ms for running the NBC in the system, and we observed a very

rapid convergence of the training process, in terms of both recognition rate and

recognition time, after only about 10 repetitions per letter in the training set.
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Figure 6.8: A. Recognition rate (mean ± s.e.m.) as a function of the size of the training
base in terms of number of repetitions (scans) per letter. Different curves correspond to
different bin widths. These results where obtained by applying the NBC on a test base
of 50 repetitions per letter. B. Recognition time (mean ± s.e.m.) as a function of the
training base size. Again, different curves correspond to different bin sizes. These results
were obtained using the same testing base as in A.

The NBC training procedure used for recognizing the Braille letters involved

a sample base of 100 trials for each Braille character. Comfortably above the

minimum of 10 trials found during the preliminary analysis. The timeset for the

temporal bin window however was set to ∆t = 4 ms, which nonetheless

remained fairly close to the optimal value of ∆t = 1 ms found previously. The

NBC computed the posterior probability of a letter being read to correspond to

a known character class every time a new bin of activity was received, meaning

every 4 ms. For online classi�cation, the computed probability distribution

(across all Braille characters) was averaged over a 40 ms history. A classi�cation

event was considered to have occurred as soon as the peak of the mean

probability distribution exceeded the 90% threshold. Naturally, the classi�cation

of the letter being read corresponded to the letter linked to the class with the

peak average posterior probability.
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6.4 Closed loop control

6.4.1 High-level speed controller

The shape of the posterior probability distribution estimated by the NBC

across all Braille letters evolved over time as the arti�cial �ngertip scanned a given

character. The ongoing degree of �peakedness� of this probability distribution

provided a simple and e�ective basis to optimize the scanning speed control. The

�peakedness� of a probability distribution is re�ected by the value of its kurtosis.

A high kurtosis value indicates that one probability is standing out relative to

the others. The null kurtosis value corresponds to a Gaussian distribution and

negative values re�ect the fact that the probability distribution is almost �at or

uniform. The fact that the posterior probability distribution computed by the

NBC was multinomial helped ensure that when the probability of one letter rose,

that of the other letters would decrease, thereby enhancing the creation of peaks

(whether local or global).

A decision making module monitored the evolution of the excess Kurtosis index

k(t) of the NBC's output average probability distribution on a 4 ms timestep basis.

The �ngertip scanning speed v(t) was then modulated according to:

v̇(t) = k(t)− k(t− 1)
C · v(t) (6.8)

where v̇(t) denotes the scanning acceleration (in cm/s2), and C a constant factor

tuned to 600 cm2/s2. An increase of the k(t) function indicated a narrowing of

the distribution, re�ecting a decrease in the uncertainty of the probabilistic

classi�cation of the character being scanned. The high-level controller

consequently increased the scanning speed proportionally to the gradient value.

By contrast, a decrease of k(t) indicated a broadening of the estimate

distribution, which induced a deceleration of the �ngertip.

6.4.2 Low-level controller

In order to compensate for errors during the execution of movements, the

closed-loop architecture incorporated a low-level controller responsible for online

sensorimotor adaptation. The low-level controller consisted of a spiking neural

network mimicking the role of the cerebellum in �ne movement control and
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coordination (Ito, 1974; Thach et al., 1992; Miall et al., 2001; Attwell et al.,

2002).

In agreement with Marr-Albus-Ito theory (Marr, 1969; Albus, 1971; Ito and

Kano, 1982), the model assumed that the cerebellum could learn internal

representations of sensorimotor interactions through its multiple microcomplexes

(Wolpert et al., 1998). Four microcomplexes were implemented, respecting the

anatomo-functional properties of their biological counterparts (see �g. 6.9).

Input signals entered the cerebellar network via the mossy �bers (MFs), which

were connected by excitatory synapses to both the granule cells (GCs) and the

deep cerebellar nuclei (DCN). Purkinje cells (PCs) received excitatory inputs

from both GCs (via the parallel �bers, PFs) and inferior olive (IO) neurons (via

the climbing �bers, CFs). PCs inhibited the DCN cells, which formed the

output of the microcircuit model. The microcomplex model adopted was taken

from a previous work by Passot et al. (2012, 2013).

The cerebellar microcomplexes were trained to act as forward predictor

models (Ito, 1984; Miall et al., 1993; Wolpert and Miall, 1996) meaning that

they could predict the outcomes of motor commands prior to their actual

execution. These predictions allowed the motor commands to be �nely adjusted

online, notably avoiding otherwise inaccurate movement execution such as local

drifts in trajectories. The training adapted the input-output dynamics of the

microcomplexes through long-term plasticity mechanisms which acted as follows.

MFs excited DCN neurons via all-to-all constant connections; hence, without

inhibition from PCs, the output of the microcircuit was constant and did not

depend on the input. In order for the output to be meaningful, the strength of

the inhibitory output of PCs should depend on the input conveyed by MFs via

GCs and PFs. The GC layer provided a sparse representation of the MF inputs

�the number of GC neurons was 100 times larger than that of MFs and the

MF-GC connection probability was only 0.04 (ie. each MF innervated 400 GCs

and each GC received 4 MF a�erents, on average, in agreement with anatomical

data, Eccles et al., 1967; Jakab and Hamori, 1988; Chadderton et al., 2004). A

sparse coding representation served to optimize the encoding capacity and

information transmission from MFs to PCs (D'Angelo and De Zeeuw, 2009).

The synapses between PFs (ie. GCs' output �bers) and PCs were the only

plastic synapses implemented in the microcircuit model, they learned to

translate the inputs into PC outputs (that inhibited the DCN). Bidirectional

long-term plasticity (ie. potentiation, LTP, and depression, LTD) modi�ed the
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Figure 6.9: A. A simplified scheme of a cerebellar microcomplex, adapted from Medina
et al., 2002. Information enters the cerebellum via two neural pathways: the mossy
fibers convey multimodal sensorimotor signals, whereas climbing fibers are assumed to
convey error-related information. Granule cells process and transmit sensorimotor inputs
to Purkinje cells. Error-related signals also converge onto Purkinje cell synapses, where
long-term modifications (i.e. long-term potentiation, LTP, and depression, LTD) occur.
B. Model of the cerebellar microcomplex circuit. Each box represents a population of
spiking neurons.
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e�cacy of PF-PC synapses and shaped the input-output dynamics of the

microcomplex (see �g. 6.9 B.). LTP was implemented as a non-associative

mechanism (Lev-Ram et al., 2002), such that every incoming PF spike triggered

a synaptic weight increase. Conversely, LTD was modeled as a supervised

associative mechanism with the teaching signal conveyed by CFs (output �bers

of the IO neurons). This is in accordance with experimental data showing that

conjunctive inputs to a PC from PFs and CFs tend to depress PF-PC

projections (Ito and Kano, 1982; Wang and Linden, 2000; Safo and Regehr,

2008). The training signal from the CFs re�ected the di�erence between the

desired position for the hand and its actual position. The actual position was

computed algorithmically, though it represented the proprioceptive knowledge

(here supposed perfectly accurate) of the hand-arm's position.

A more comprehensive description of the cerebellar microcomplex model can

be found in Passot et al. (2012).

6.4.3 Hand-arm robotic platform

The closed-loop system was test using a simulated 2 degrees of freedom arm

with noisy dynamics, taken from Carrillo et al. (2008). The arm model included

two joints (shoulder, elbow), with the arm end-point carrying the simulated

touch sensor described in Sec. 6.2.2. The four cerebellar forward models learned

to predict the future angular position and velocity of each of the two joints.

During movement control, the predicted joint states allowed to algorithmically

estimate what the arm end-point position (in Cartesian coordinates) would be.

A trajectory generator Carrillo et al. (2008) compared the desired and predicted

position of the arm end-point and updated the motor commands consequently.

Note that the wrist joint was not included in the model, instead the simulated

arm would only compute the sensor's position (at the arm's end-point), while

the sensor's orientation was considered constant.

The performance of the overall Braille reading system was also tested in a

real-world scenario. For this preliminary experiment, the arti�cial touch sensor

Cannata et al. (2008) was �xed on the index digit of the DLR-HIT hand 2 (Liu

et al., 2008) which was mounted on the DLR light-weight robot III (LWR) (Albu-

Schä�er et al., 2007a). Both the LWR robot and the DLR-HIT hand were operated

in impedance control mode Albu-Schä�er et al. (2007b), which ensured stability

even in physical contact situations as was required by this task. The �ngertip
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was rubbed over a Braille line comprising seven di�erent characters at a constant

speed of 30 mm/s. This preliminary robotic validation gave rise to a real-time

and online Braille reading demonstrator in the framework of the European project

`Sensopac', no. IST-028056-IP (�g. 6.10).

For the real-world robotic setup, the �ne control of the arm joints was left to

the robotic controller instead of the cerebellar model described above (see section

6.4.2). The traveling speed imposed to the sensor was constant, however, if an

error in the trajectory was detected, corrective movement commands were sent

to the robotic platform. Notably, errors of a few millimeters in the trajectory

could be detected using feedback from the sensor, allowing for some form of high-

level control. Still, compared to the simulated arm, noise in the pitch and roll

dynamics of the real arm-hand platform remained marginally compensated, which

increased the probability of inhomogeneous and discontinuous contacts between

the �ngertip and Braille characters.

6.4.4 Technical implementation details

All modules containing spiking neuron models �that is the �rst-order and

second-order neurons, as well as the neurons of the cerebellum� where

implemented using the C++ programming language. Furthermore, both the

cuneate nucleus model and the cerebellum were implemented through the

EDLUT (Event-Driven neural simulator based on LookUp Tables)1 simulation

environment (Ros et al., 2006). EDLUT was designed for e�cient simulation of

complex neural network models and takes advantage of both time-driven and

event-drive procedures to guarantee a fast computation and update of neural

state variables (Garrido et al., 2011). Thanks to its properties, the EDLUT

environment provided the system with the computational e�ciency required for

neurobotic applications.

The Naïve Bayesian Classi�er and high-level controller were run as Matlab

scripts. Every component of the system was designed as a separate module,

capable of being run independently or removed from the system altogether.

Di�erent modules communicated between each other using �Transmission

Control Protocol/Internet Protocol� (TCP/IP), except for the robotic hand-arm

platform which was controlled through a �User Datagram Protocol� (UDP)

1EDLUT is an open source project freely available at http://edlut.googlecode.com.
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Figure 6.10: Preliminary validation on a real robotic platform performing real-time
Braille reading. A. The arm-hand robotic platform performing online and real-time
Braille reading. B. The artificial touch sensor was fixed on the robotic hand DLR-HIT
hand II. C. The robotic hand-arm sliding over a Braille line. D. A scaled Braille character
line.
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interface.

The running frequency of the entire system had to be adapted to suit the

temporal constraints of individual modules. The arti�cial �ngertip had an

acquisition frequency of only 20 Hz, well below the temporal precision required

for �ne touch discrimination. To compensate, sensor values were interpolated

between two acquisition times, allowing the spatiotemporal patterns from the

neuron models to remain temporally precise. The simulated version of the

sensors was designed to run at 1000 Hz, allowing it not to be a limiting factor

for the online execution of the rest of the system.

6.5 Analysis tools

6.5.1 Metrical information theory

Before studying the the Naïve Bayesian Classi�er's performance, it was

necessary to �rst assess the quantity of information which was transmitted (or

lost) by the �rst and second order neurons. Doing so was important in oder to

understand which part of the discrimination results was the due to the choice of

classi�er, and which was due to the loss of information along the modeled

ascending pathway.

To do so, an information theory framework was adopted. Information theory

is a powerful mathematical tool which is capable of quantifying how well it is

theoretically possible to discriminate an input signal database, knowing only the

corresponding output signals �ie. how much information about the input signals

the output signals contain. A more comprehensive description of the information

theory tools used is provided in section 4.1.

It is recalled here that metrical information I∗(R;S) is de�ned by:

I∗(R;S) = H∗(R)−H∗(R|S) (6.9)
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where

H∗(R) = −
∑
r

p(r) log2

∑
r′

p(r′)φ(r, r′)

 (6.10)

H∗(R|S) =
∑
s

p(s)H(R|s) = −
∑
s,r

p(r, s) log2

∑
r′

p(r′|s)φ(r, r′)

(6.11)
φ(r, r′) = H

(
Dc −D(r, r′)

)
(6.12)

where I(R;S) is the mutual information; H(R) and H(R|S) are the marginal

and conditional entropies, respectively; R and S denote respectively the

response and the stimulus space; p(r), with r ∈ R, is the response marginal

probability; p(s), with s ∈ S, the stimulus a priori probability; p(r|s) and p(r, s)
the conditional and joint probabilities, respectively. The function φ(r, r′)
measures the similarity between two responses, and it is de�ned as the Heaviside

function of the Victor-Purpura distance D(r, r′) between two spike trains

r, r′ ∈ R (see section 4.2.1, Victor and Purpura, 1996. The Victor-Purpura

distance allowed to choose the temporal resolution with which spike times were

compared, by tuning a cost parameter. The term Dc is the cuto� parameter,

named critical distance. For D(r, r′) < Dc, responses r, r′ are considered as

identical (i.e. φ(r, r′) = 1), otherwise they are considered as di�erent. If Dc = 0,
then the metrical version of entropies are identical their Shannon counterparts.

When considering metrical information theory, the optimality condition

corresponds to a maximal I∗(R;S) along with a null (or minimal) H∗(R|S).
Conceptually, this means that not only do the output signals contain as much

information as they can possibly have, but that there is a space in which the

responses are unambiguously clustered �ie. the decoding of the output signals is

very simple.

6.5.2 Braille pattern complexity

With the control loop closed, the system is able to devise movement strategies

to scan the di�erent Braille charcters. A complexity measure was found to model

the 'shape' of Braille characters and see if and how it in�uenced the system

movement strategies.
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Several complexity measures have been established in the �eld of psychophysics

to describe visual (Alexander and Carey, 1968; Chipman, 1977; Yodogawa, 1982)

and vibro-tactile stimuli (Horner, 1991). The objective of these di�erent measures

was to link an objective quantity to the complexity perceived by a human subject

(Aksentijevic and Gibson, 2012). Such measures have also been applied to study

the Braille alphabet, however this has been done by concentrating solely around

the number of dots as an estimator of complexity (Nolan and Kederis, 1969;

Newman et al., 1984). However, other complexity measures for dot patterns exist

(Ichikawa, 1985) and could be adapted to Braille character patterns. Similarly

to the process used by Ichikawa (1985), the correlation between Braille letter

complexity and movement policy was estimated as a linear combination of two

complexity measures: the number of dots Dot (Nolan and Kederis, 1969), and

the number of subsymmetries Sym (Alexander and Carey, 1968). The number of

subsymmetries was computed as follows:

C = α ·Dot+ (1− α) · Sym (6.13)

where

Sym =
X∑
x=1

Y∑
y=1

(X−x∑
i=1

Y−y∑
j=1

i · j ·NSym(x,y)(i, j)
)

(6.14)

with α = 0.94. The Sym function counted the number of symmetries of each

rectangular sub-grid of the Braille character matrix and added them in a sum

weighted by the area of the sub-grid; with X and Y referring to the size of the

�rst and second cell dimensions respectively (i.e. 2×3 in the case of Braille cells),

and NSym(x,y)(i, j) being the number of symmetries observed in the rectangle

of size i × j at position (x, y). The symmetries considered consisted in vertical,

horizontal, and central symmetries for all sub-grid dimensions, as well as both

diagonal symmetries when i = j.



Chapter 7

Results

The current chapter presents the behavior of the neural architecture in a real

world scenario. A Braille reading task was used to: (i) quantify the information

content of �rst and second order neuron activity, (ii) assess the performance of the

implemented classi�er, (iii) and estimate the robustness of the high and low-level

controllers.

7.1 First order neuron responses

7.1.1 Model response characterization

The model �rst order neuron responses were �rst characterized and compared

to real mechanoreceptor responses. To do so, experimental protocols used during

microneurography recording sessions were reproduced in simulation. The two

protocols consisted in delivering a passively applied stimuli indenting the human

�ngertip while recording di�erent mechanoreceptor response. These studies were

carried out by Phillips et al. (1990) and Birznieks et al. (2001) respectively.

Topological mapping

In the �rst experimental protocol (Phillips et al., 1990), a series of moving

Braille characters were passively sensed by �xed �ngertip. The Braille

characters were dynamically swiped at 60 mm/s over the receptive �eld of a

recorded mechanoreceptor following the distal-proximal direction. Once the

stimulus exited the receptive �eld, its position was shifted by 0.2 mm along the

radial-ulnar axis, and the process repeated. This procedure allowed the so called

Spatial Event Plot (SEP, Phillips et al., 1988b) to be constructed from the

recorded mechanoreceptor spikes. A SEP consists in displaying the recorded

spikes onto the stimulus pattern in order to obtain a spatial representation of
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Figure 7.1: A. Comparison between the spatial event plots of responses from the
four different mechanoreceptor types in the human glabrous skin to a Braille “J”
stimulus. Note the scale difference (1:1.7) between recorded and simulated responses
(as explained in section 6.2.1). B. Different examples of spatial event plots of human
SAI mechanoreceptor responses to scanned Braille characters, and their simulated
counterparts. (recorded spatial event plots were adapted from Phillips et al., 1990)

the outgoing activity. This representation is made possible through the precise

knowledge of the stimulus position at each time point as well as the precise

timing of the spikes. Examples of the results are illustrated in �gure 7.1.

Simulated SEPs, which illustrated the spatiotemporal characteristics of a �rst

order neuron response to a moving Braille stimulus, were qualitatively most

similar to those of slow adaptive type I (SAI) human mechanoreceptors (see �g.

7.1 A.).

Receptive �eld sizes were estimated by computing the areal extent of the �ber's

response cluster to an isolated dot. Recorded and simulated a�erents were found

to have comparable receptive �eld sizes at respectively 4.8 ± 1.2 mm2 (mean ±
std) and 4.7 ± 1.5 mm2 after correcting for the scale di�erence. However, due to

mechanical constraints, the modeled receptive �elds had very little overlap and

consequently covered the arti�cial �ngertip with a density of 17 units/mm2, one

fourth of the 70 units/mm2 reached by their biological counterparts (Phillips et al.,

1990). Furthermore, simulated mechanoreceptor SEPs in response to Braille dots
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seemed to remain more symmetrical then those of their biological equivalents (see

�g. 7.1 B.). The distortion observed on the recorded SEPs is likely due to the

compression of the �ngertip's skin as the stimulus is dynamically swiped over it.

Though not entirely inexistent �thanks to the neoprene layer� this phenomenon

remains marginal at best in the arti�cial �ngertip. Nonetheless, they showed a

topological stimulus-response mapping, an important property for the encoding

of �ne spatial discontinuities (Johansson and Flanagan, 2009).

Response dynamics

Figure 7.2 shows an example of discharge pattern recorded from a simulated

�rst order neuron in response to a single dot stimulus moving at 30 mm/s.

Responses are shown as a raster plot of spike times (middle) and the

corresponding PSTH (bottom) during 150 stimulation trials. The analog output

signal from the indented touch sensor serves as depolarizing current to the

model neurons (top).

Like SAI mechanoreceptors, the neuron responded with a sustained activity

exclusively during the entire indentation time. Furthermore, the spike timing

reliability of the �ring pattern was high at the onset of the protraction stimulation

phase and decreased with time, as was observed for human SAI mechanoreceptors

(Johansson and Flanagan, 2009) and more generally in central neurons (Mainen

and Sejnowski, 1995).

The second experimental protocol (Birznieks et al., 2001) was then

simulated. This allowed to compare both �rst spike jitter and interspike interval

(ISI) distributions of the model SAIs against the experimental data (see �g. 7.3)

reported in Johansson and Birznieks (2004). Despite a time lag of about 2 ms,

there was no statistically signi�cant di�erence between the two distribution

shapes (Kolmogorov-Smirnov, p > 0.076). Indeed, when accounting for the 2 ms

delay, no statistical di�erence between the two distribution medians was

observed (Mann-Whitney U, p > 0.11). Note that to estimate the distribution of

�rst spike jitters, Johansson and Birznieks (2004) computed the standard

deviation of �rst spike latencies for �ve repetitions of every stimulus.

Consequently, supposing that �rst spike times (elicited by the same stim lus)

follow a normal distribution, and observing that the mean jitter recorded was

bout 0.8 ms, it can be deduced that 99% of �rst spikes were within a 3 ms

neighborhood around the mean recorded latency. Under the same assumptions,
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bottom) of 150 responses of a simulated first order neuron to a single dot stimulus moving
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stimulus. (adapted from Bologna et al., 2013)

the 2 ms second di�erence observed on the model jitter distribution leads to

99% of �rst spikes being in a 9 ms neighborhood around the mean latency. This

is a signi�cant di�erence and �considering the amount of information the precise

timing of �rst spikes yields (Johansson and Birznieks, 2004)� a drawback for the

system performance.

Nonetheless, when comparing the ISI distributions from simulated and real

mechanoreceptor responses (see �g. 7.3 B.), the medians of the two distributions

were not statistically di�erent (Mann�Whitney U test, p > 0.16). Consequently,
�ring rates of model and real SAI are likely to be found in a similar range.

However, the ISI variability of model neurons was smaller than in recorded SAI

a�erents. This di�erence may re�ect the viscoelastic properties and more

complex dynamics of the human skin as compared to the arti�cial �nger.
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7.1.2 Information content of responses to static
indentation

An information theoretical analysis was performed to assess the information

encoded in �rst order neuron responses to 26 distinct Braille characters sensed

statically. During a protraction phase, Braille characters were gradually pressed

on the �ngertip where they then stayed immobile during 250 ms before being

gradually lifted. Both protraction and retraction phases lasted 125 ms. The

evolution of metrical information over time was monitored to quantify how rapidly

after the stimulus onset a perfect discrimination of all Braille stimuli could be

achieved. Considering that the implemented classi�er �ie. the Naïve Bayesian

Classi�er, see 6.3.3� would only use spike counts to discriminate between di�erent

signals, the cost parameter of the Victor-Purpura distance was set to 0 for this

theoretical analysis. The results are illustrated in �gure 7.4.

Within 100 ms of the stimulus onset the maximum intra-stimuli distance

becomes smaller than the minimum interstimuli distance (see �g. 7.4 A., top),

thereby satisfying the condition for an error-less stimulus reconstruction �ie.
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Figure 7.4: Metrical information analysis of primary afferent responses to static Braille
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(dashed black line) remains equal to zero. Bottom: information variability, measured as
mean standard error, over time. C. Distances between mechanoreceptor responses before
(left matrix) and after (right matrix) the perfect discrimination condition is reached.
Twenty repetitions for each character are used and distances computed for all 5202 spike
train pairs. Each line shows the distances between a single response to a stimulus and all
other responses. Intrastimulus distances are grouped into small squares (20-sample side)
along the diagonal and become remarkably smaller than the others (i.e. interstimulus
distances) after the optimal discrimination point is reached (right matrix). (taken from
Bologna et al., 2011)



7.1. FIRST ORDER NEURON RESPONSES 103

maximal metrical information I∗(R;S) and zero conditional entropy H∗(R|S)
(see �g. 7.4 B., top). The metrical information reaches a maximal value of 4.7

bits, meaning that enough information is present to discriminate all 24.7 = 26

stimuli. Consistently with a previous decoding analysis performed on real

primary a�erent recordings (Johansson and Birznieks, 2004), a fast and

complete discrimination could theoretically occur before the end of the

indentation protraction phase (see �g. 7.4 A., bottom), which corresponds to the

period after which the time precision of spikes deteriorated. This study was

performed on 12 batches of 20 repetitions for each Braille character. Despite the

relatively small sample size, the error remained surprisingly small (see �g. 7.4

B., bottom). This suggests that despite a lower temporal precision than in the

biological system, model signals were still quite robust and highly reproducible.

Figure 7.4 C. also reports two examples of distance matrices between

simulated mechanoreceptor responses before (left) and after (right) the

occurrence of the perfect discrimination condition. For t < 100 ms (left matrix)

responses to di�erent stimuli can have relatively small distances, which produces

interferences impairing the decoding process. By contrast, for t > 100 ms (right

matrix) all the initially overlapping contexts becomes well separated, removing

all interferences across inputs and leading to 100% accuracy in the

discrimination process. Note the di�erent colormap scales used to represent

spike train distances DV P before and after the occurrence of the optimality

condition.

7.1.3 Information content of responses to dynamic
stimulation

For the second information theoretical analysis, the simulated data was

obtained by dynamically delivering the stimuli. All 26 Braille characters moved

laterally over the �ngertip at a constant velocity of 15 mm/s. Figure 7.5

illustrates the sensor, mechanoreceptor and cuneate neurons outputs as the

letter �y� was scanned following the dynamical protocol.

The evolution of maximal and minimal intra- and interstimulus distances

over time was once again investigated (see �g. 7.6). The condition of perfect

discrimination of all 26 Braille inputs was reached after about 700 ms from

stimulus onset. As predicted by metrical information theory, this condition
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Figure 7.5: Example of sensor (bottom) responses to a dynamically delivered (at 15
mm/s) stimulus ‘y’, and the corresponding mechanoreceptor (middle) and cuneate (top)
activity during the entire stimulation period. Given the one to one connectivity between
mechanoreceptors and sensors (see section 6.3.1), neuron indexes shown in the central
plot correspond to sensor indexes in the bottom plot. Differently, given many to many
connectivity of the cuneate nucleus, the indexing of cuneate neurons was omitted for the
sake of clarity. (adapted from Bologna et al., 2011)
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Figure 7.6: Metrical information analysis of primary afferent responses to dynamic Braille
stimuli. A. Evolution of maximal and minimal interstimulus and maximal intrastimulus
distances over time (blue and red curves respectively) on a semilogarithmic scale. The
minimal intrastimulus distance is approximately zero during the entire stimulus duration
and has not been reported. The critical distance used for computing the metrical
information and entropy is indicated by Dcritic. Sixty repetitions per stimulus are used.
Perfect discrimination occurs 700 ms after the stimulus onset. Note that at the end of
the stimulus application the minimum interstimulus distance becomes smaller than the
maximum intrastimulus distance, indicating that interferences between similar stimuli
impair the discrimination process. B. Top: The time course of information (grey circles:
data; continuous red line: sliding window smoothing) and of conditional entropy (dashed
black line) confirms that perfect discrimination of all 26 Braille characters is achieved
at time t ≈ 700 ms. Bottom: information variability, measured as mean standard error
(s.e.m.), over time. (adapted from Bologna et al., 2011)

corresponds to maximum information and zero conditional entropy (see �g. 7.6

B.). As could be expected, the metrical information curve (red line) exhibits a

plateau starting at around 400 ms and lasting for about 120 ms. This

corresponds to the stimulation phase during which the �rst column of Braille

dots is already in contact with the �ngertip while the second column does not

yet stimulate any sensor. The information value at plateau is about half of the

total amount of information transmitted, meaning that the �rst column of dots

is enough to discriminate between 22.6 = 6 di�erent groups of Braille characters.

This study was carried out on the same sample size as for the analysis in static

condition (see section 7.1.2). As observed for the static scenario, the error

remained small (see �g. 7.6 B., bottom).

Figure 7.6 B. shows a drop in the amount of metrical information after 1500
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Figure 7.7: Time course of metrical mutual information (solid curve) and conditional
entropy (dashed curve) at the output of first order neurons (left) and cuneate neurons
(right), as the fingertip scans the entire Braille alphabet at 30 mm/s during 200 trials.
The bottom diagrams display the time course of the s.e.m. for both metrical information
and conditional entropy. (adapted from Bologna et al., 2013)

ms. This re�ects an increasing interference between the spike count of di�erent

Braille characters, making it impossible to correctly discriminate them. This is

linked to the dot pattern organization of certain symmetrical Braille characters

which creates an ambiguity that cannot be resolved by the �rst order neurons (see

section 6.2.1).

7.2 Second order neuron responses

7.2.1 Information content of neural responses

The theoretical information analysis carried out on �rst order neuron outputs

(see sections 7.1.2 and 7.1.3) was also applied to the second order neuron

responses with similar results. In both static and dynamic stimulation

conditions, the information dynamics were identical to those observed in �rst

order neurons. In the static indentation condition, perfect discrimination of all

Braille stimuli occurred approximately within 100 ms of stimulus onset, just as

for the primary a�erent level (see section 7.1.2).

Figure 7.7 shows a comparison between the information evolution at the
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primary a�erent and cuneate neuron output level. The stimulation protocol

consisted in scanning the entire 26 character Braille alphabet at a constant

speed of 30 mm/s during 200 trials. As such, with the exception of the speed

value �which rose from 15 mm/s to 30 mm/s� it was the same protocol as

described in section 7.1.3. At the mechanoreceptor level (�g. 7.7, left), a

complete discrimination of all Braille characters occurred within 350 ms of

stimulus onset, at which point the optimality condition was veri�ed (see section

4.1). As when tested at 15 mm/s, the information curve exhibited a plateau

after about 100 ms and lasting approximately 75 ms. Simulated cuneate outputs

displayed a similar information content pro�le (�g. 7.7, right), according to

which a perfect discrimination of the inputs occurred as rapidly as at the �rst

order neuron level. Yet, the redundancy of second order neuron responses was

slightly larger, as is re�ected by the non-zero conditional metrical entropy after

350 ms.

As observed in section 7.1.3 (see �g. 7.6 B.), also in the dynamic scenario,

primary a�erent processing led to a drop in the information as the dynamic

stimulation progressed (though the information drop occurs beyond the plot's

axisin �g. 7.7). This, however, was not the case for cuneate output signals. The

processing by the cuneate network therefore allowed the information curve to be

monotonic during the entire stimulation phase.

7.2.2 Information content as a function of velocity

The theoretical analysis of cuneate responses was extended to consider the

e�ect of di�erent scanning velocities on the systems performance. To do so, the

information content of cuneate responses and the discrimination time �ie. time

taken to converge to the maximal information, or the optimal discrimination

point when possible� were computed as a function of 16 scanning velocities in the

range [5 - 90] mm/s. For speed values between 5 - 50 mm/s, the time necessary to

achieve maximum discrimination decreases exponentially (see �g. 7.8 A.). Within

the same speed range, the information remained constant at its maximum value.

For higher reading velocities, recognition time stabilized between 400 and 500 ms,

but a signi�cant reduction in information content occured, making a complete

stimulus discrimination impossible. These results show the existence of a trade-o�

between scanning speed and discrimination capabilities, with an optimal velocity

range for single Braille character recognition of 40 - 50 mm/s (see �g. 7.8 B.).
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Figure 7.8: Cuneate responses information content as a function of velocity. A. Maximal
metrical information (solid line) and time necessary to reach the information maximum
(dashed line) plotted against the scanning velocity. B. Maximal information as a function
of recognition time. Both diagrams show the optimal velocity range, in terms of scanning
speed and discrimination accuracy, to be 40 - 50 mm/s. (adapted from Bologna et al.,
2011)

7.2.3 Probabilistic classification of neural responses

Even if after 350 ms both mechanoreceptor and cuneate responses contained

enough information to discriminate all Braille letters theoretically, this is no

guaranty that the implemented probabilistic decoder could bene�t from the

processing carried out at the cuneate level to improve on the classi�cation

performance. The above stimulation protocol was extended by varying the

�ngertip speed within the range [10 - 80] mm/s (by steps of 10 mm/s). For each

speed value, the �ngertip scanned all 26 Braille characters for 100 trials. The

performance of the Naïve Bayesian Classi�er was comparable when decoding

�rst and second order neuron responses at movement speeds lower than 30

mm/s (�g. 7.9, top). By contrast, processing at the cuneate level led to a

statistically signi�cant increase of 12% in the classi�cation performance at 30

mm/s (Mann-Whitney U, p < 0.01), with respect to what was obtained at the

mechanoreceptor level. Such an improvement in performance was even larger for

higher scanning speeds, showing that cuneate processing enhanced the

generalization and robustness of the classi�cation process in the presence of

speed modulations. Figure 7.9 (bottom) shows the non classi�cation rate �ie.
how often, on average, the system was unable to classify a Braille letter during

scanning. This measure is related to the mean number of reversal movements

during the Braille reading, which consisted in backtracking the �ngertip to



7.2. SECOND ORDER NEURON RESPONSES 109

rescan a letter that had not been recognized. In accordance with the above

results, for scanning speeds higher than 30 mm/s, the non classi�cation rate was

signi�cantly larger when decoding �rst order neuron responses than cuneate

activity.
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Figure 7.9: Mean recognition rate (top) and non-classification rate (bottom) when using
the Naïve Bayesian Classifier to decode first-order activity (left column) and cuneate
responses (right column) at different Braille scanning speeds. (adapted from Bologna
et al., 2013)

7.2.4 Mediation of Braille character interference

To explain this performance di�erence, the in�uence of Braille dot arrangement

on possible recognition rate was studied. Some Braille dot arrangements are likely

to evoke similar mechanoreceptor responses due to the homogeneous structure of

the arti�cial touch sensor. For instance, symmetrical letters (eg. `e' & `i', `d' & `f',

`h' & `j' and `r' & `w') would activate the same subset of sensors, increasing the

probability of cross-character interference during scanning. This was illustrated by

performing a principal component analysis (PCA) of both �rst order and cuneate

responses obtained at a scanning speed of 30 mm/s (see �g. 7.10). It can be

observed that while the separation between the clusters of responses to letters

`e' and `i' at the �rst order level decreased over time, it remained fairly constant

for the cuneate responses. The reduced interference between symmetrical letters
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at the second order level partially explains the corresponding better classi�cation

performance at higher speeds (�g. 7.9). In the context of the full Braille alphabet,

an early discrimination was prevented by interference from letters with identical

�rst dot columns (eg. `a', `c' & `d' for letter `e'). In the case of �rst order

neuron responses, subsequent interference by symmetrical characters left only a

small time window available for the classi�cation to occur. This was re�ected

by the notable drop in the information available at the output of �rst order

neurons towards the end of the scanning phase (see section 7.1.3 and �g. 7.6). For

high scanning speeds, this window shortened and the classi�cation performance

decreased consequently. By contrast, cuneate processing avoided this e�ect and

maintained a higher performance at increased speeds.
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Figure 7.10: Principal component analysis on mechanoreceptor (left) and cuneate (right)
responses to Braille character ‘e’ and ‘i’. In both cases, the response clusters are projected
onto the first and third principal component plane (the second component did not contain
any information for distinguishing the two responses). (adapted from Bologna et al.,
2013)

7.2.5 Cuneate network processing

The processing operated by the cuneate network was therefore essential for

preventing interference between dot patterns in the spike count coding scheme.

For all cuneate neurons, an individual input spike was enough to generate an

outgoing action potential. This is coherent with observations of high synaptic

e�cacy at the cuneate level (Hsiao and Yau, 2008). However, neurons often have

a non-linear dynamic and it was observed that the one-to-one ratio in

input-output spikes was not preserved when considering entire spike patterns.
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Typically, input �ring rates higher than 40 Hz, led to an outgoing activity that

was signi�cantly lower than the ingoing one (see �g. 7.11, blue curve). This was

due to the adaptation mechanism implemented in the neuronal model used (see

section 6.3.2).

One of the consequences of this property of the model was that while

maintaining a high synaptic e�cacy, the cuneate network could also act as a

coincidence detector. Indeed, the co-activation of two �rst order neurons

connecting to the same cuneate neuron led to a noticeably di�erent activity

pattern �and ultimately to a di�erent spike count� than two successive

activation of one of these same �rst order neurons. For example, the dot pattern

of the Braille character `c' is composed of two neighboring dots (see section

6.2.1), which successively activates two adjacent mechanoreceptors as the

character is scanned by the �ngertip at 30 mm/s for 100 repetitions. The

cuneate neurons that were co-activated �red 16.3 ± 1.9 (mean ± std) whereas

neurons that were successively activated had a total of 20.9 ± 1.2 (mean ± std)

outgoing spikes (Mann-Whitney U, p < 10−3). Had the neurons acted as linear

integrator of spikes, the di�erence would not have been signi�cant and the spike

count could not have carried information about co-activations.

A more thorough analysis was carried out by recording the output spike count

to di�erent input �ring rates. Spike trains lasted for 5 seconds and were generated

randomly, following a Poisson process at di�erent constant �ring frequencies. The

analysis was performed with 50 repetitions per input frequency (which varied from

10 to 150 Hz by step of 10 Hz). When a cuneate neuron was connected to more

than one mechanoreceptor, inputs were delivered to either one, two or three of

its synapses. In that case, correlated spike trains, built by adding random jitters

to a Poisson spike train, were also delivered to each input synapses. The jitters

were taken from a Gaussian distribution with a 3 ms standard deviation in order

to re�ect the jitter values found in the model mechanoreceptors (see �g. 7.3).

Values of standard deviation of up to 10 ms were also tested and yielded similar

results.

The outgoing activity �ring rate is plotted in �gure 7.11. As mentioned

previously, output spike counts did not vary linearly with the frequency of the

input. Furthermore, cuneate neurons connected to multiple mechanoreceptors

(red and green curves in �g. 7.11) responded di�erently when only one, two or

three of these mechanoreceptors �red simultaneously. This could be expected

given that, for a given input frequency, using two input channels would result in
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actually doubling the input spike count. For uncorrelated input spike trains,

output activities were indeed indistinguishable between a single input at a given

frequency and two inputs at half of that frequency (�g. 7.11 A). However, this

was not true for correlated inputs, in which case the two di�erent input

scenarios could be recognized through the outgoing spike count (�g. 7.11 B). In

e�ect the cuneate network acted as a coincidence detector. This allowed cuneate

neurons to account for co-activations and encode the information in the spike

counts, thereby resolving the performance issues arising from the interference

between characters (see section 7.2.4).
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Figure 7.11: Input-output frequency transfer function of the cuneate network. Spike
trains, lasting for 5 seconds, were generated randomly, following a Poisson process
at different constant firing frequencies. Different curves display different stimulation
scenarios –for individual neurons– represented, in the legends, by a two digit code:
“nin − nco”, nin being the number of active input synapses and nco the number
of mechanoreceptor-to-cuneate connections the neuron has (ie. the total number of
input synapses). Cases “1-3” and “2-3” overlap perfectly with cases “1-2” and “2-2”
respectively, and are not represented on the plot. A. Inputs were uncorrelated Poisson
spike trains. The different input scenarios were indistinguishable by the system as output
spike counts were identical for an input at frequency f and two inputs at a frequency
f/2. B. Correlated inputs were generated by adding a 3 ms jitter to the same Poisson
spike train. All scenarios are here distinguishable from a spike count perspective. In
effect, the cuneate network acted as a coincidence detector.

7.3 Online classification of Braille characters

Using the simulation environment, the complete closed loop system was tested

in an online classi�cation task of Braille stimuli. This involved a probabilistic

classi�cation process decoding the tactile signals processed by the �rst and second
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order neural networks, as well as a high and a low level controller modulating the

scanning velocity and thereby closing the active sensing loop.

7.3.1 Classification performance

The performance of the entire closed loop system �including high- and

low-level movement control� was tested in a Braille reading task. The arti�cial

�ngertip scanned multiple Braille lines containing 8 letters each, for a total of

200 trials (ie. repetitions) per letter. During the scanning, the feed-forward

networks of �rst and second order neurons provided the probabilistic classi�er

(ie. Naïve Bayesian Classi�er) with continuously evolving spiking responses.

Using the cumulative spike count of these responses, the classi�er estimated

online the posterior probability distribution. In the ideal case, this distribution

converges towards a narrow single peaked shape, thereby allowing the

classi�cation of the Braille character to be achieved.

Figure 7.12 A. shows the time course of two examples of posterior probability

distributions corresponding to the scanning of the letter `r' (top) and `e'

(bottom). In the �rst example, early cuneate activity did not allow the

probabilistic classi�er to distinguish between `r' and other Braille characters

with a similar dot arrangement (ie. `l', `p', `q', `v'). Nevertheless, as the

�ngertip progressed over the character, the probability distribution started to

peak, indicating a decrease of uncertainty, until a correct classi�cation became

possible.

As shown by the confusion matrix in �gure 7.12 B. and by the distribution in

�gure 7.12 C., the overall online classi�cation performance was characterized by

a recognition rate of 95 ± 1.5 % (mean ± s.e.m.), a non classi�cation rate (ie.
reversal movement rate) of 1 ± 0.4 %, and a false positive rate of 4± 1.3%.

7.3.2 Speed modulation

The speed modulation which determined the active sensing policy was a

function of the evolution of the posterior probability distribution through time

(see section 6.4.1). Figure 7.13 A. displays the time course of the posterior

probability distribution (top) and of the corresponding �nger acceleration pro�le

(bottom) while scanning a line with three letters (`d', `y', and `n'). Over the
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Figure 7.12: A. Time course of the posterior probability distribution estimated by the
Naïve Bayesian Classifier when scanning the Braille letter ‘r’ (top) and ‘e’ (bottom). B.
Confusion matrix showing the recognition rate and cross-letter interference during online
probabilistic classification of Braille characters. The protocol involved 200 scanning
trials for each of the 26 letters. C. Mean recognition rate distribution across the Braille
alphabet. (adapted from Bologna et al., 2013)

entire Braille reading task, the mean number of �nger accelerations (both

positive and negative) per letter was equal to 11.8, which is of the same order of

magnitude as that observed in human Braille reading experiments (Hughes,

2011; Hughes et al., 2011). Importantly, the movement policy (and consequently

the number of accelerations) varied signi�cantly depending on the letter being

scanned (see �g. 7.13 B., top; Kruskal-Wallis ANOVA, p < 0.01). In addition, a

signi�cant correlation between the distribution of Braille character complexity

(see section 6.5.2) and the distribution of the number of accelerations per letter

was found (�g. 7.13 B., bottom; Spearman's ρ = 0.66, p< 10−3).

7.3.3 Robustness to position errors

During Braille reading, the low-level cerebellar controller adjusted the

trajectory of the �ngertip online. The training of the cerebellar network was

carried out over 10 sessions. Each session consisted of 10 trials during which the

�ngertip (ie. the end-point of the 2 degree of freedom arm carrying the arti�cial

touch sensor, see section 6.4.3) had to scan a Braille line containing 8 evenly

spaced characters, at a constant command speed of 30 mm/s. After training, the
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Figure 7.13: A. Top: example of evolution of the posterior probability distribution
estimated by the Naïve Bayesian Classifier as the fingertip was scanning a Braille line
with three letters. Bottom: corresponding online fingertip acceleration profile. B. Top:
mean number of accelerations (both positive and negative) per letter, averaged over 200
repetitions (solid line: mean; gray area: s.e.m.). Accelerations smaller than 0.1 mm/s2

were filtered out for this analysis. Bottom: complexity value of the different Braille
characters. (adapted from Bologna et al., 2013)

output of the cerebellar network provided a good estimator of the noisy arm

dynamics Passot et al. (2013). This allowed motor commands to be tuned online

and the movement accuracy to be improved accordingly. The mean position

error, computed as the discrepancy between desired and actual �ngertip

trajectory, decreased signi�cantly through cerebellar training, from 0.81 ± 0.04

mm (mean ± s.e.m.) to 0.54 ± 0.04 mm (Mann-Whitney U, p < 0.01).

Figure 7.14 A. shows a sample of �ngertip trajectory (top), the

corresponding PSTH (center) of the cerebellar output (ie. the activity of

simulated neurons in the deep cerebellar nuclei, DCN), and two examples of

DCN spikegrams. Figure 7.14 B. shows a �ngertip trajectory, averaged over 10

trials, with and without cerebellar-dependent adaptation (blue and red curve,

respectively). The cerebellar online adjustment proved e�ective at reducing

�ngertip oscillation amplitudes.

To study the in�uence of position inaccuracies on the classi�cation

performance, a line of Braille characters was swiped over the immobile �ngertip

at 30 mm/s. After 80 repetitions of each letter, the Braille line was shifted along

the distal-to-proximal axis by 0.5 mm, and the process repeated. This shift

corresponded to a �ngertip position change along the Y axis in the active

sensing scenario. Note that in this protocol, the positions of the Braille lines and
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Figure 7.14: A. Example of fingertip trajectory (top), corresponding PSTH (center) of
the cerebellar output (ie. activity of simulated deep cerebellar nucleus –DCN– units), and
raster plots of DCN spike trains at two different moments of the trajectory (bottom). B.
Fingertip trajectory samples before and after training of the cerebellar low-level controller
(red and blue curve, respectively). Solid lines indicate mean trajectories averaged over 10
trials, whereas shaded areas delimit the corresponding s.e.m. values. C. Mean percentage
of points of a trajectory exceeding the ±1 mm boundary as a function of cerebellar
training sessions. D. mean recognition rate, averaged over all Braille characters and 80
repetitions per character, as a function of the Y position of the finger (the shaded area
represents the s.e.m.). E. distribution of recognition rates across all Braille letters for
different Y positions. (taken from Bologna et al., 2013)

of the �ngertip were tightly controlled and no trajectory errors could occur.

Consequently, this protocol allowed to quantify the system's classi�cation

performance as a function of the position along the Y axis (see �g. 7.14 D.).

The mean classi�cation performance remained high within the ±1 mm range,

but decreased sharply beyond these boundaries. The best recognition rate of
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99% occurred at Y positions of 0 and -0.5 mm (Mann-Whitney U, p > 0.4). A

more in depth look at the system's performance depending on the Braille letter

(�g. 7.14 E.) revealed that the recognition rate of individual letters tended to

follow an all-or-none pattern, with few intermediate values.

Taking into account this observation, the percentage of times the �ngertip

trajectory exceeded a ±1 mm bounded region was recorded (dashed lines in

�g. 7.14 B.). The resulting error, averaged over 10 trials, decreased signi�cantly

through cerebellar training (see �g. 7.14 C.; Mann-Whitney U, p < 10−3).

About 82% of the positions belonging to a �nger trajectory fell, on average,

within the ±1 mm boundary by the end of training.

7.4 Preliminary robotic implementation

The system performance was tested in a preliminary experiment in which a

robotic hand-arm platform equipped with the arti�cial �ngertip had to solve a

Braille reading task (see section 6.4.3). In this implementation, speed

modulation signals from the the high-level controller were ignored, and the

low-level algorithmic controller of the robotic system was used to replace the

cerebellar model. The scanning speed of the �ngertip was maintained broadly

constant at 30 mm/s, though corrective signals were occasionally sent to account

for trajectory errors.
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Figure 7.15: Mean recognition rate distribution across a subset of Braille letters, and
mean ± s.e.m. values. (adapted from Bologna et al., 2013)

The system implementation was tested on a subset of representative Braille

characters (ie. `a', `c', `e', `n', `o', `p', `s'), for which 150 trials were recorded

per character. As in the simulated version, the �rst and second order neural

networks mediated feed-forward processing of tactile signals prior to their use for
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probabilistic classi�cation. The Naïve Bayesian Classi�er was trained through the

same o�ine procedure used for the simulated data. Among the 150 trials, 100

were randomly selected for training and 50 kept as a testing database. The mean

classi�cation rate, averaged over the 7 characters, was 89 ± 5.3% (mean ± s.e.m.;

�g. 7.15), with a false positive rate of 11 ± 5.3%.



Part IV

Conclusions





Chapter 8

Conclusions

The work carried out in the context of this thesis led to the development of

a closed-loop neural architecture for �ne tactile sensing. A computational model

of mechanoreceptive a�erents and of the cuneate network was established on the

basis of the neural coding principles observed at these stages of the somatosensory

system. The output signals of these models were analyzed using theoretical tools

in order to assess the quality of the encoding. Second order output signals were

also fed to a probabilistic classi�er tasked with decoding the tactile information.

A closed loop system was built by associating the mechanoreceptor model with an

arti�cial �ngertip, whose position was modulated according to the classi�cation

results. In addition, a neuro-mimetic model of the cerebellum was used for the

low-level control of the �ngertip position. This architecture was tested using a real

robotic implementation for which the capacitive sensors were �xed to a robotic

hand-arm system to act as the arti�cial skin of the �ngertip.

The current chapter �rst provides a summary of the main results and

contributions of this study. The second section is centered around a discussion

on the achievement of the main objective and the future directions of this

research.

8.1 Main results and contributions

8.1.1 Mechanoreceptor model

Tactile processing at the early stages of the somatosensory pathway was

emulated by converting the analog readouts into mechanoreceptor-like

responses. The analog inputs were informative of the skin deformation induced

by the texture being read. These inputs were built using an arti�cial touch

sensor also used during the robotic implementation of the architecture. A
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preliminary characterization of these sensors was carried out, and a

computational model was derived to simulate their response to di�erent stimuli.

Thanks to the sensor model, analog inputs could be simulated o�ine, under

various conditions, in order to test the mechanoreceptor model.

A leaky integrate-and-�re model was used as basis for generating

mechanoreceptive output signals. This type of model had already been

successfully used to model the activity of FAI and SAI mechanoreceptive

a�erents (Lesniak and Gerling, 2009; Kim et al., 2010; Gerling et al., 2013).

Leaky integrate-and-�re neurons allowed to accurately reproduce

mechanoreceptor properties while meeting the computational requirements for

performing the task online. Each model �rst-order neuron was connected to a

single capacitive sensor (either physical or simulated) to receive skin

deformation information.

The developed model managed to capture some of the known properties of

SAI mechanoreceptors. Though both SAI and FAI primary a�erents are

involved in �ne touch discrimination, SAI have been shown to better capture the

spatial discontinuities for textures of Braille-like size and likely transmit most of

the information relevant in this case (Phillips et al., 1992; Johnson, 2001; Hsiao

and Yau, 2008). Model neurons were tuned to have similar spatial modulation

properties as their biological counterparts, notably thanks to comparable

receptive �eld sizes. Firing rates where broadly the same, although a little more

contained in the case of the model SAIs, and the temporal precision of spikes

was lower by 2 ms in the case of the model. As the leaky integrate-and-�re

model used did not contain a noisy component, the poorer temporal precision

was the consequence of the variability of the analog signal from the sensors.

An analysis of the model's output spike trains using information theory tools

�adapted to the study of spike train-like signals and previously used on human

microneurography recordings of peripheral a�erents (Brasselet et al., 2011b)�

showed that a su�cient amount of information was conveyed in these signals for

a full discrimination of all 26 Braille-like stimuli. The time of optimal

discrimination �de�ned as the time of maximal metrical information and of

minimal conditional entropy� was reached around 300 ms after the stimulus.

However, this discrimination time was constrained by the fact that both

columns of dots in the Braille character had to be read before the maximal

information could be reached. In comparison, when the focus was placed on the

�rst column of Braille dots only, optimal discrimination occurred some 100 ms
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after the stimulus onset. This was consistent with the �nding that the

spatiotemporal structure of mechanoreceptor responses provides highly relevant

information about the stimulus (Brasselet et al., 2011b).

8.1.2 Cuneate nucleus model

Primary a�erent signals were processed by a network of second order neurons

embodying the biological cuneate nucleus. The neural architecture of this

network was founded on a previous modeling work in which the spike-response

model was used to capture the properties of cuneate neurons. The EDLUT

simulation environment (Ros et al., 2006) underlying the implementation of the

model allowed for a quick computation of the neural dynamics.

Following the literature on the subject, the network was composed of a single

layer of neurons (see section 2). The connectivity between �rst and second order

neurons was �xed at a low rate, as has been observed in the functional synapses

of the biological system (Bengtsson et al., 2013). This limited number of

functional connections was complemented by high synaptic weights allowing a

cuneate spike to be generated for every input spike. The model did not include

lateral inhibitory neurons, nor the resulting center-surround receptive �elds

which have been documented in the literature (Canedo and Aguilar, 2000).

However, this shortcoming most likely had little consequence on the output of

the cuneate neurons given the chosen set of stimuli and the sensor layout.

Indeed, this complex receptive �eld structure has been shown to enhance

perceptual contrast and allow the most active output neurons to limit the

activity of less active neighbors (Kandel et al., 2000); yet, given the lack of

consequential overlap between the sensors receptive' �elds, individual Braille

dots rarely activated more than one sensor at a time. Consequently, in the case

of the dot arrangements used as stimuli, and given the characteristics of the

sensors, contrast levels were already very high.

No information loss was observed at the output of the model cuneate, and all

stimuli remained theoretically discriminable. A small delay in the information

transfer �relative to �rst order neuron signals� was observed when considering

the precise spatiotemporal structure of the output signals. This is likely the

consequence of the slightly noisy dynamics of cuneate neurons. The sparse

connectivity between �rst and second order neurons allowed the cuneate

network to act as a coincidence detector, as has been discussed by Johansson
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and Birznieks (2004) and Johansson and Flanagan (2009). The result was a

remapping of the information contained in the spatiotemporal structure of

primary a�erent spike trains into the rate coding scheme. This allowed to

increase the maximal separability and resolve ambiguities that might arise

downstream, where the probabilistic classi�cation occurred.

8.1.3 Discrimination process

Downstream of the simulated cuneate layer, a Naïve Bayesian classi�er

performed stimulus pattern recognition. The Naïve Bayesian is a relatively

simple classi�cation process which can outperform more sophisticated algorithms

in some categorization tasks. Its simplicity stems from the underlying hypothesis

that the system variables are independent. This assumption is seldom veri�ed in

real world applications, however this does not seem to signi�cantly deteriorate

the classi�cation performance. This is likely due to the fact that the statistical

dependencies between the attributes often either cancel themselves out or are

evenly distributed among classes (Zhang, 2004). Furthermore, even though the

values of the posterior probabilities computed by the Naïve Bayesian classi�er

may be inaccurate, signi�cant di�erences are likely to remain true. In the case

of categorization tasks, the class with a signi�cantly higher posterior probability

is often the correct class for the data sample considered, regardless of the precise

value of its probability (Domingos and Pazzani, 1996, 1997).

The probabilistic approach used for performing the classi�cation allowed for

an e�cient discrimination of 95 ± 1.5 % (mean ± s.e.m.) of all Braille stimuli

online in simulation, and of 89 ± 5.3% (mean ± s.e.m.) in the case of the real

robotic implementation. It also provided the tools necessary for estimating online

how close the systems was to being able to perform the discrimination. This was

later used to devise a movement policy for guiding the �ngertip movements.

8.1.4 Finger kinematics

The action perception loop was closed by a high- and a low-level controller.

The high-level controller relied on the posterior probability distribution computed

by the Naïve Bayesian classi�er to modulate the movement velocity. When the

system detected that the discrimination point was drawing nearer �ie. that the

amount of information was increasing rapidly� the scanning speed of the �nger
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was augmented. Reciprocally, if the level of doubt increased, the movement speed

was decreased.

The low-level controller used for �ne tuning the movement was implemented

through a spiking neural network model of the cerebellum. This model was

derived from a previous work by Passot et al. (2013) using the same

micro-complex structure. The cerebellar networks were formed through a

semi-supervised learning protocol to act as forward predictors. In e�ect, this

allowed trajectory errors to be anticipated and corrected preemptively. After

learning, the cerebellar model was capable of maintaining the �ngertip within

less than 1 mm from the desired position during 85% of the character scanning

time. This ±1 mm boundary was found to be the spatial resolution allowing the

system to perform optimally. The �ne tuning operated by the cerebellum also

gave rise to an increased number of accelerations and decelerations in the

�ngertip movement.

While performing a Braille reading or scanning task, the human �nger

undergoes an important number of speed modulations, the origins of which are

not well understood. Several mechanisms (eg. sensorimotor, semantic, linguistic)

undoubtedly play an important role in building the �nal trajectory, but the

extent of their contributions is still unclear (Hughes, 2011; Hughes et al., 2011).

For example, sublexical mechanisms were shown to in�uence the number of

accelerations only in speci�c reading conditions (Hughes, 2011). Without

seeking a comprehensive explanation for the origin of �nger accelerations, this

platform was used to investigate if a simple probabilistic approach could account

for the in�uence of texture complexity and local ambiguities on �nger

kinematics. Results showed a number of accelerations that were coherent with

experimental observations (Hughes, 2011) as well as signi�cantly correlated with

the complexity of Braille dot patterns.

8.2 Limitations and perspectives

The closed loop system presented in this manuscript was developed following

a neuro-engineering approach and can be extended to further investigate (i) the
neural bases of �ne touch processing and active sensing, (ii) neuromorphic-like

solutions for humanoid robotics built on the e�ciency principles behind tactile

coding, and ultimately (iii) biologically plausible sensory feedbacks for haptic
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neuro-prosthetic applications. In the following sections, limitations of the

current system to its application in real world environments will be discussed.

Its performance will be compared to that of other �ne touch discrimination

robotic devices and possible improvements will be considered. Along the same

line, the neural architecture and its individual components will be questioned,

and possible future developments discussed.

8.2.1 System performance

The chosen probabilistic classi�er allowed to e�ciently discriminate 95 ± 1.5%

(mean ± s.e.m.) of all Braille stimuli online in simulation, and 89 ± 5.3% (mean

± s.e.m.) in the case of the real robotic implementation. While this is not

an unsatisfactory performance, it was obtained while testing the system in a

restrained environment. Indeed, only 26 spatial patterns (of identical intensity)

were used as stimuli and the surface scanning was carried out only along one

dimension (ie. following the Braille line). By comparison, Fishel and Loeb (2012)

managed to obtain a 95.4% recognition rate when choosing from a database of 117

di�erent textures. Other modern texture discrimination devices demonstrated

similar (ie. close to 95% or higher) performances (Giguere and Dudek, 2011;

Oddo et al., 2011; Jamali and Sammut, 2011; Sinapov et al., 2011b). The two

tasks are not quite comparable as the �ne touch sensing carried out by the closed

loop system consists in spatial pattern recognition instead of texture recognition

�although both systems could probably be used for the discrimination of gross

texture. Nonetheless, it suggests that the performance should be tested on a

larger database than that used here. Given the observed properties of the system

(notably the precise somatotopic encoding of stimuli patterns), it is likely that

the current system's performance would be maintained for a greater number of

patterns; the only constraint being that the �nger and neural networks be scaled

up with the size of the patterns being scanned.

The system did account for a limited amount of noise in its trajectory. This

position error exponentially a�ected the performance of the system, which fell

from 99% to 95% (recognition rate) when passing from a perfect trajectory to the

noisy arm simulation, and then to 89% during the implementation on an actual

robotic arm. The near perfect performance of the system in an ideal situation (ie.
perfect trajectory) leads to believe that neither the neuro-inspired processing nor

the simple classi�er are responsible for the system's fall in performance.
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Limiting the position error is therefore essential for maintaining the overall

performance of the system. However, this objective is unlikely to be reached

realistically, and, in real world applications, increasing the robustness of the

classi�cation to position errors is a more e�cient solution. To do so, either a

more extensive database must be created, or some feature extraction mechanism

must be considered.

Using a probabilistic classi�er also provided the tools necessary for

estimating online how close the system was to being able to perform the

discrimination. This was later used to devise a movement policy for guiding the

�ngertip movements. The movement policy did not increase the classi�cation

rate but allowed an increase in the recognition speed. Other systems have relied

on policies which actively select movements to better discriminate between

di�erent possibilities and facilitate the classi�cation (Xu et al., 2013; Fishel and

Loeb, 2012; Saal et al., 2010) similarly to what is observed in human behavior

(Loeb et al., 2011b). Learning mechanisms, which gradually increase the

performance of the robotic systems, have also been tested (Xu et al., 2013) and

could help optimize discrimination behaviors in evolving environments.

8.2.2 Neuromorphic processing of fine touch information

The current system was designed to reproduce the neural bases of �ne touch

processing, and transfer the e�ciency and performance principles of the

biological system onto a neuro-robotic platform. To this e�ect, the �rst two

stages of processing were modeled after the peripheral ascending somatosensory

system. However, both these networks relied either directly or indirectly on

signals originating from the arti�cial touch sensor.

Concerning the overall system's performance, the arti�cial touch sensor's

properties proved to be a limiting element. Although providing signals with very

little noise (see section 6.2.2), its spatial and temporal resolution were low with

respectively 5.8 sensor/cm2 (when no rescaling is taken into account) and an

acquisition frequency of 20 Hz. The size of the sensors by themselves was

suitable (after rescaling the Braille characters), but the lack of overlap between

sensitive areas of the capacitive pads was responsible for the lower spatial

resolution. The neoprene layer spread over the sensors did dampen the shape of

receptive �elds, and led to a noticeable but still small overlap. Arguably, a

higher overlap could also allow for more redundancy in the information encoded
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(multiple sensors recording the same indentation point on the skin), thereby

providing a means for averaging out part of the temporal imprecision in the

signals.

The system's primary a�erent model was based on leaky integrate-and-�re

neurons, which have proven to be a suitable model for reproducing the

deterministic nature of mechanoreceptor responses (Lesniak and Gerling, 2009;

Kim et al., 2010; Gerling et al., 2013). Most of these models use �ltering

techniques or mechanical simulations to create the skin deformation signals fed

into the leaky integrate-and-�re neuron. Here, this role was played by the

arti�cial �ngertip and its particular dynamics. Consequently, the temporal

imprecision of the touch sensor's signals was inherited by the mechanoreceptor

model. Outgoing spike trains were shown to be less precise by a few milliseconds

than that of their biological counterparts.

The system's modular architecture makes it possible to easily modify

individual components. Given the current system's limitations, one such

modi�cation should consist in introducing a more e�cient transduction

technology (Maheshwari and Saraf, 2008) to replace the current sensors.

Notably, a higher acquisition frequency is required to increase the temporal

precision of spiking signals (Johansson and Flanagan, 2009). Besides increasing

the system's theoretical performance (Brasselet et al., 2011b), more biologically

accurate dynamics could allow to reproduce and study di�erent coding

strategies. It has notably been suggested that primary a�erents might encode

stimulus features to create an isomorphic representation of the stimulus space

(Brasselet et al., 2011a). Such a coding scheme would constitute an important

improvement for characterizing and possibly recognizing unknown stimuli.

Introducing new transduction technologies could also help increase the spatial

resolution and sensor density of the �ngertip. In particular, linking multiple, very

small, sensors to single mechanoreceptors should permit to imitate the irregular

and inhomogeneous receptive �elds observed in the glabrous skin (Johansson,

1978; Vallbo and Johansson, 1984; Phillips et al., 1992). Recent experimental

evidence suggests that the pattern of hotspots on the receptive �eld might help

extract stimulus shape features as early as the primary a�erent level (Pruszynski

et al., 2011). A temporal coding scheme would allow such feature extraction to

remain compatible with the topological (or isomorphic) representation of stimulus

shapes observed up till cortical areas (Phillips et al., 1988a). This may increase

the encoding capabilities of single mechanoreceptive a�erents and perhaps serve
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as a basis for the known stimulus orientation selectivity of somatosensory cortical

responses (Hsiao et al., 2002). The mechanoreceptor model would bene�t from

the implementation of this feature, if only to generate more bio-mimetic signals.

However, it should also prove useful in helping to better understand how and with

what advantages both encoding schemes can be combined; or conversely, how this

early processing might be disadvantageous for distinguishing certain stimuli.

The choice was made to model SAI primary a�erents as those are most likely

to be involved in the transduction of detailed spatial features (Phillips et al.,

1990; Srinivasan and LaMotte, 1987; LaMotte and Srinivasan, 1987; Hsiao and

Yau, 2008). This was helped by the properties of the touch sensors with their

sharp, well-de�ned receptive �elds and their ongoing �tonic� response (see

section 2.2.2 for a comparison with primary a�erent functional properties).

However, concentrating on only one mechanoreceptor type both ignores the

contribution from the other types in extracting speci�c features of the stimulus

and simpli�es the processing of informative signals in the higher areas of the

nervous system. This limitation has been noticed in the �eld of robotics and

some sensors now integrate components for recording di�erent sub-modalities

(Castelli, 2002; Dahiya et al., 2010; Loeb et al., 2011b). This is not an issue in

the current context as SAI neurons are best suited to extract the only relevant

information �the location of the Braille dots� but it does limit the possible

application of the architecture to other contexts without prior modi�cation.

In this study, the cuneate nucleus network was �xed following a sparse

connectivity paradigm (see section 6.3.2). While this proved essential to resolve

signal ambiguities (see section 7.2.4), the connectivity layout was ultimately

arbitrary and resulted in cutaneous receptive �elds unlikely to closely resemble

experimental observations, although basic properties were maintained. This is

notably re�ected by the absence of center-surround receptive �elds, although

there is little chance that their absence played a signi�cant role in the system's

performance (see section 8.1.2). Complementing the current excitatory

dynamics with lateral inhibitory connections (Sánchez, Barro, Marino and

Canedo, 2001; Sánchez et al., 2003) and a sensor with a higher spatial resolution

would allow to generate more complex receptive �elds. Furthermore, the

addition of plasticity mechanisms capable of shaping the connectivity layout

(and indirectly the receptive �elds) could lead to both a more robust robotic

system (adaptable to the stimulus base considered) and would allow to test

hypotheses as to how and why cuneate receptive �elds are de�ned. Indeed,
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though the underlying mechanisms are still poorly understood, an increasing

amount of experimental evidence suggests that a cuneate network reshaping

occurs following a�erent injury (Millar et al., 1976; Pettit and Schwark, 1993;

Darian-Smith and Ciferri, 2006).

Similarly, the cuneate activity patterns were simpli�ed in the model (Pubols

et al., 1989; Canedo et al., 1998) and the spontaneous activity displayed by some

cuneate neurons (Sanchez et al., 2006; Canedo et al., 1998; Pubols et al., 1989)

was not implemented. A probabilistic discrimination based on spike counts

would still have been possible had this been modeled, but its performance would

have decreased with the added noise on the signal. A new classi�er, relying on

the more precise spatio-temporal structure of the cuneate spike trains, could be

implemented perhaps using mechanisms relying on precise spike times such as

spike timing dependent plasticity (STDP, Bi and Poo, 1998). STDP is a

Hebbian learning mechanism (Hebb, 1949) induced by tight temporal

correlations and has been extensively observed in many central brain regions

(for a review see Sjöström et al., 2008). This learning rule has already been used

in unsupervised spike pattern recognition tasks (Masquelier and Thorpe, 2007;

Masquelier, Guyonneau and Thorpe, 2009), and has proven to be extremely

robust to noise induced by spontaneous activity (Guyonneau et al., 2011;

Masquelier et al., 2008). The STDP rule might also be capable of exploiting the

sustained oscillatory 20 Hz component observed in cuneate activity (Marino

et al., 999), if a phase coding mechanism is con�rmed at this level (Masquelier,

Hugues, Deco and Thorpe, 2009). Actual implementations of this rule in circuit

systems using memristors as synapses has also been considered

(Serrano-Gotarredona et al., 2013), suggesting that its addition to a

neuro-robotic system could even take place at the hardware level.

8.3 Final considerations

This manuscript presents a neural architecture capable of �ne touch

discrimination. The processing of tactile information was based on neural coding

properties of the peripheral somatosensory system. Networks of spiking neurons

were used to replicate the processing operated on biological signals before

discrimination. Beyond the possible application of this framework to

investigating the neural bases of �ne touch processing and providing



8.3. FINAL CONSIDERATIONS 131

neuromorphic-like solutions for humanoid robotics, the principles upon which

this system was designed will contribute to building biologically plausible

sensory feedbacks for haptic neuroprosthetic applications.
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