Combining Multimodal Sensory Input for
Spatial Learning

Thomas Strésslin', Christophe Krebser, Angelo Arleo?, and Wulfram Gerstner?

! Laboratory of Computational Neuroscience, EPFL, Lausanne, Switzerland
2 Laboratoire de Physiologie de la Perception et de 1’ Action, College de
France-CNRS, Paris, France

Abstract. For robust self-localisation in real environments autonomous
agents must rely upon multimodal sensory information. The relative
importance of a sensory modality is not constant during the agent-
environment interaction. We study the interrelation between visual and
tactile information in a spatial learning task. We adopt a biologically in-
spired approach to detect multimodal correlations based on the proper-
ties of neurons in the superior colliculus. Reward-based Hebbian learning
is applied to train an active gating network to weigh individual senses
depending on the current environmental conditions. The model is imple-
mented and tested on a mobile robot platform.

1 Introduction

Multimodal information is important for spatial localisation and navigation of
both animals and robots. Combining multisensory information is a difficult task.
The relative importance of multiple sensory modalities is not constant during
the agent-environment interaction, which makes it hard to use predefined sensor
models.

The hippocampal formation of rats seems to contain a spatial representation
which is important for complex navigation tasks [T]. We propose a spatial learn-
ing system in which external (visual and tactile) and internal (proprioceptive)
processed signals converge onto a spatial representation. Here we focus on the
dynamics of the interrelation between visual and tactile sensors and we put forth
a learning mechanism to weigh these two modalities according to environmental
conditions. Our system is inspired by neural properties of the superior colliculus,
a brain structure that seems to be involved in multimodal perception [2314].

2 Related Work

The rat’s hippocampal formation receives highly processed multimodal sensory
information and is a likely neural basis for spatial coding [I5l6I7]. Hippocampal
place cells discharge selectively as a function of the position of the rat in the
environment.
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The superior colliculus (SC) is involved in oculomotor responses and in the
processing of multimodal information (visual, tactile and auditory) [2]. There is
also evidence that SC contains neurons with spatial firing properties [3/4].

Robotic models of multimodal integration [9IT0] are mostly based on prob-
abilistic sensor fusion techniques in the framework of occupancy grids which
cannot easily be transposed into biological models. Most current biological mod-
els of localisation and navigation [11/12] focus on a single external modality and
neglect the problem of combining multimodal information.

3 Proposed Model

We adopt a hippocampal place code similar to [I2] as a spatial map. Hebbian
learning is used to correlate idiothetic (path integration) and allothetic (visual
and tactile) stimuli with place cell activity.

Here we model the integration of visual and tactile signals into a common
allothetic representation. The weight of each sense is modulated by a gating
network which learns to adapt the importance of each sense to the current en-
vironmental condition. Intermodal correlations are established using uni- and
multimodal units inspired by neurons in the superior colliculus. The model is
implemented on a Khepera mobile robot platform. Figure [l shows the architec-
ture of the system.

Idiothet/ Allothetic

T oo

il

Path Integration View cells Tactilecells

Fig. 1. Architecture of our spatial localisation system
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3.1 Neural Coding of Sensory Input

During exploration, the hippocampal place code is established. At each new
location, wview cells (VCs) and tactile cells (TCs) convert the agent’s sensory
input to neural activity.

Sensory cell (VC and TC) activity r; depends on the mean distance between
the current sensor values x; and the stored values w;; at creation of cell i.
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Visual input from the greyscale camera is processed using a set of Gabor fil-
ters. The magnitudes of the complex filter responses are stored in the weights w;;
of the created VC (see [L3] for more details).
Tactile input from each of the eight infrared proximity sensors is scaled
to [0, 1] and stored in the weights w;; of the created TC.

3.2 Unimodal and Multimodal Cells in Superior Colliculus

Intermodal correlations between visual and tactile input are established in the
exploration phase using uni- and multimodal neurons inspired by the superior
colliculus (SC) [23]. Sensory cells project to the input layer of SC which consists
of unimodal visual (UVs) and tactile (UTs) cells. Those unimodal cells project
to multimodal cells (MMs) in the output layer of SC. The architecture of our
SC model is shown in Figure 2] (a).

Fig. 2. Architecture of our superior colliculus model (a) and the gating network (b)

Whenever the agent receives strong visual and tactile input simultaneously,
it creates a tactile and a visual unimodal cell. Synapses between sensory cells
(TCs and UTs) are established and adapted using a Hebbian learning rule

Awgj =n ri(r; — wij) (2)
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where 7; is the postsynaptic unimodal cell, r; is the sensory cell and 7 the
learning rate. The same happens for VCs connecting to UVs. The firing rate r;
of an unimodal cell is given by the weighted mean activity of its presynaptic
neurons j.

D WigT;
T ©)

j Wi

The most active unimodal cells connect to a new multimodal output cell and
synapses are learnt according to equation 2l The firing rate r; of a multimodal
cell i differs from equation[d in that both UTs and UVs need to be active to
trigger the firing of a multimodal cell
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where k is a constant.

3.3 Learning the Gating Network

During exploration, the most active sensory cells establish connections to a
newly created allothetic place cell. The synaptic strengths evolve according to
equation [2.

The firing rate r; of an allothetic place cell ¢ is the weighted mean activity of

its presynaptic neurons j where all inputs from the same modality are collectively
VC TC

modulated by the gating value g or g respectively.
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The gating network consists of five input neurons which are fully connected
to two output neurons as shown in figure 2] (b). mUV, mUT and mMM are
the mean UV, UT and MM activity. V' is the mean pixel brightness of the
unprocessed camera image. 1" is the mean proximity sensor input. The output

neurons gVC and gTC provide the gating values of equation

We train the gating network to adapt its output values to the current envi-
ronmental condition. During learning, the agent moves randomly in the explored
environment and tries to localise itself. At each timestep, illumination in the en-
vironment is turned off with probability Pr or left unchanged otherwise. The
weights are updated according to equation [, but Aw;; is also modulated by a
reward signal q.

The reward ¢ depends on two properties of the allothetic place code: (a)
variance around centre of mass o, and (b) population activity act,.. Positive
reward is given for compact place cell activity (ie. small variance o) and rea-
sonable mean population activity. Negative reward corresponds to very disperse
place coding or low activity. "_l;he equation for the reward ¢ is as2 follows

q= [exp(_w) - dsize:| {eXP(—M) - dact] (6)
Osize 2O'act

where Gopt, Osize, dsize, AClopt, Oact, Aact are constants.
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4 Results and Conclusions

Experiments are conducted on a Khepera mobile robot. An 80 x 80cm boarded
arena placed on a table in a normal office serves as environment. A rectangular-
shaped object is placed in the arena to increase the amount of tactile input to
the system.

Figure 3] (a) shows the gating values for the visual and tactile senses after
learning the gating network. Most of the time, visual input is the only activated
modality. Everytime the robot is near an obstacle however, the tactile sense is
assigned a slightly higher importance than vision. The abrupt changes are due
to the binary nature of the tactile sensors.

Figure 3] (b) shows the gate values when the illumination is reduced by 80%.
Most of the time, vision and tactile senses receive equal importance. Whenever
an obstacle is near, however, the agent relies mostly on its tactile input.
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Fig. 3. Gate values in openfield and border positions. (a) good illumination. (b) almost
no light

The main difficulty in learning the importance of sensory input lies in de-
termining the reliability and uncertainty of a percept. We use the mean place
cell activity and the activity variance around the centre of mass as a quality
measure to change the weights of the gating network. Accessing the variance
in spatial representations might be difficult to motivate biologically. Plausible
neural mechanisms that measure place code accuracy should be found.

The brain certainly uses various methods to evaluate the relevance of sen-
sorial input. We are working on more biologically plausible methods to assess
place code quality.
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